High Strung Organ

I was playing around with a bunch of different Thor parameters and came up with a sound I really liked. So I worked on it some more and it turned into this little puppy. It’s not really a true organ, but it sounds somewhat similar. A bright twangy atonal organ.

Download the Combinator: high-strung-organ

Description: I was playing around with a bunch of different Thor parameters and came up with a sound I really liked. So I worked on it some more and it turned into this little puppy. It’s not really a true organ, but it sounds somewhat similar. A bright twangy atonal organ.

Features: The Combinator is fairly simple. It uses a Multi-Oscillator and an Analog Oscillator in Thor. Then it routes the Left part of the audio through a delay, and the Right part of the audio through a Phaser. After that, the two Mixers are used to Cross-fade the signals. You can then use Rotary 4 to decide where the signals are placed: Left or Right. Here’s the complete rundown of the Combinator controls:

Pitch Bend: The pitch bend adjusts the Pitch up or down by 7 semitones.

Mod Wheel: The mod wheel affects the Filter Frequency of the first Filter in Thor. Shifting the Mod Wheel up increases the Frequency a bit.

Rotary 1: Delay Dry/Wet – This controls the DDL1 Delay device’s dry/wet amount from fully dry (turned to the left) to fully wet (turned to the right).

Rotary 2: Shape – Controls the Bipulse Shaper drive from Thor. Increasing this rotary adds more shaper distortion to the signal. Lowering this Rotary lessens the distortion and provides a clearer sound.

Rotary 3: Envelope – Controls the envelope of the High-Pass Filter in Filter slot 1 in Thor. Use this to adjust the tone of the sound being filtered. You can get some very interesting results playing with this Rotary.

Rotary 4: Side Switcher – This crossfades the sounds. Since the Delay and Phaser are placed on opposite sides in the stereo field, this knob allows you to adjust which side you want to place them. When this Rotary is centered, both FX devices are placed center in the stereo field. In other words, there won’t be any panning when the Rotary is dead center.

Button 1: 1st Delay – This turns on the Thor Delay for some synched delay doubling. This simple switch will turn it on (when lit) and off (when unlit).

Button 2: Formant – If you want to completely change the way this patch sounds, you might want to try out this button. In essence, it adds a second Formant Filter in Thor’s second filter slot, so that both Oscillators are routed in series through both the High Pass Filter and the Formant Filter, and then out to the Amp. But this button will give your sound a whole new perspective.

Button 3: Alt Wave – This changes the Multi Osc Wave type for the first Thor Oscillator. When left off, the sound is more bright and distorted due to the saw wave. When turned on, the sound becomes much more dulled. You’ll have to play around with this button and see how it sounds along with changing the other parameters. It can add a whole new element to your sound.

Button 4: Chorus – I didn’t really know what to do with this button. But then I thought about creatinve some really wacky Chorusing, since this sound is already on the wacky side. So I adjusted the Chorus to affect the sound in a pretty severe way. Try it out. When lit, the Chorus is turned on, and when unlit, the Chorus is removed from the signal path.

Usage: You can use this any way you like. But mainly it provides a Synth Lead sound.

Other Notes: You can really change this sound around quite a bit just by playing with the Combinator Rotaries and Buttons. So you’ll have to experiment to find something that suits your taste. I’m sure there are also settings that might not necessarily sit well together because it’s sound range is pretty vast and varied. But I’ve found some pretty useful sounds out of this setup. I hope you do as well. Also note that there’s no finishing touches on it, such as compression or reverb, so this will sound pretty raw as is. You may want to add your own final touches through a second Dynamics Processor Combinator.

As always, please let me know what you think or let me know if and how you use this in your own projects. Happy Reasoning!

10 – Creative ReDrums (Part 2)

In part 1 of our Redrum tutorials, I showed you a few ways you can improve the drum kits in your arsenal by using Thor’s filters, and some M Class Mastering devices. In this tutorial, I’m going to work in reverse and show you how to use the Redrum as a gate CV device to trigger a series of 10 Thors, which act as the drum sounds.

Creative Redrums (Part 2)

In part 1 of our Redrum tutorials, I showed you a few ways you can improve the drum kits in your arsenal by using Thor’s filters, and some M Class Mastering devices. In this tutorial, I’m going to work in reverse and show you how to use the Redrum as a gate CV device to trigger a series of 10 Thors, which act as the drum sounds. This is where things can get pretty interesting, as you can gain complete control over the drum sounds by creating them from scratch using Thor’s Oscillators and Filters. Then, we’ll try to use a technique laid out by Matt Piper in which all the drums are filtered through a Vocoder. This is yet another way to get some beef and boom out of the drums. So let’s work some creative Redrum magic.

The project file contains an .rns file with a single Combinator which outlines a complete drum kit with vocoder filtering, Mastering, and a few extra effects thrown in. Download the Project Files here: creative-redrums-2.

The Basic Setup

  1. Create a Combinator, and inside create a 14:2 Mixer. Then holding Shift down, create in order a Redrum, Spider CV Merger/Splitter, and Thor Synth.
  2. Right-click over the Redrum Pattern section and select “Randomize Pattern” just to quickly add a pattern. For this tutorial, the Redrum is used as a sequencer, and nothing more. You’ll be able to change the Resolution of the Pattern, number of steps, and use the Mute/Solo functions, but samples are not necessary.
  3. Next, Create a Bass Drum sound in Thor. Here’s an example of one way you could go about doing this (see the screenshot below). In the Sequencer section, change the Run Mode to 1-shot, and reduce the steps down to 2. Then in the Modulation Bus Routing Section (MBRS), enter the following:

    CV In1: 100 > Filt1 In

    The Front Panel of Thor with our Analog Bass Drum Sound
    The Front Panel of Thor with our Analog Bass Drum Sound
  4. Now let’s flip the rack around to the back and make our routing connections. First, connect the Left and Right Audio Outputs (1 and 2) from Thor into the Left and Right Audio Inputs on Channel 1 on the Mixer. Then connect the Gate Out on Channel 1 of the Redrum into the Split A input. Send one split output to the CV 1 In on Thor, and send another split to the Gate in (Trig) CV input on the Thor Step Sequencer (at the bottom of Thor).

    Routings on the Back of the rack
    Routings on the Back of the rack
  5. Press Play, and if you will hear the Bass Drum playing. If you don’t hear anything, be sure to check the Pattern in the Redrum and make sure there are some Bass Drum parts in the Pattern Sequencer.
  6. Still on the back of the rack, select the Spider Merger/Splitter and Thor together by shift+clicking on both devices. Right-click and select “Duplicate Devices and Tracks.” Then connect the Left and Right Audio Outputs (1 and 2) from the second Thor into the Left and Right Audio Inputs on Channel 2 on the Mixer. And connect the Gate Out CV from the Redrum second channel into Split A on the Spider CV Merger/Splitter.
  7. Flip the rack around to the front and create a new drum sound in Thor, maybe another Bass Drum or Snare. Repeat this process until you have all 10 Redrum channels filled up. Congratulations! You’ve just created a complete drum kit.

Vocoder Filtering

This trick was shown in Matt Piper’s great Youtube video where he set up a Vocoder to filter his drums. To see the video, visit his tutorial here: propellerhead-record-reason-vocoding-with-drums

  1. Once you have your drum kit set up, go to the back of the rack, and select the Mixer. Hold Shift down, and create a BV512 Vocoder, Thor, and a Spider Audio Merger/Splitter.
  2. Move the Left and Right Audio input cables on the Combinator (From Devices) to the Left and Right Carrier Input on the Vocoder. Then connect the Left and Right Carrier Output from the Vocoder to the Left and Right Audio input on the Combinator (From Devices).
  3. Route The 1 Mono/Left and 2 Right Outputs from the Thor device to two Left Merge channels on the Spider Audio Merger/Splitter. Connect the Merged output from those two cables to the Modulator Input on the Vocoder. With our routing set up, flip around to the front of the rack.

    Vocoder Routing setup
    Vocoder Routing setup
  4. On the front panel of the Vocoder, set the Band Count to 4 Bands (I also found the 8 and 16 bands work well, depending what kind of sound you are looking for). Move the Shift knob to around -24, and Decay to around 80.
  5. In Thor’s global top panel, set the Polyphony to 1, Release Polyphony to 0, and Key Mode to mono Retrig. In the Voice section, add a Noise Oscillator in Slot 1, set the Noise Wave to Color, and Noise Mod to around 36. Then turn on “1” to send the Oscillator to Filter 1 slot (which is on Bypass by the way). Turn off everything else except the Filter and Amp Envelope. In the Step Sequencer section, set the Run Mode to Repeat.

    The front panel settings for the Vocoder and Thor Modulator
    The front panel settings for the Vocoder and Thor Modulator

That’s really all there is to it. Not too complex, just time consuming to create all your drum sounds in the various Thor devices. But it’s very rewarding when you have your own custom drum kit set up just the way you want.

Where do you go from here?

  • You can try the same setup with a stack of Subtractors or Malstrom devices, or any combination of Subs, Mals and Thors to create your custom drum kits.
  • You can add a reverb and a delay to your drums. Also, for an instant doubling effect, you can modulate a button on the combinator to switch from 1-2 steps in all the Thors at once. This doubles up the drum beats (see below for this setup in my own Electro Drum kit).
  • Try going into the Thor which is used as the Vocoder’s Modulator, and switch the Oscillator 1 Noise wave from Color to Static, and then set the Noise mod dial to around 30 or so. You’ll create some very interesting glitch effects.
  • As you can see I’ve added a few effects here and there. There’s two phasers tied to the Hi Hats, for example. In this same way, you can chain some effects into the drums individually. Try adding some scream or even vocoding the drums separately. However, if you do, you’ll have to realize that the more effects, the more CPU intensive this gets. As it is, I only saw 2 bars on my CPU meter. Not too bad. Definitely less intensive than the last kit I put together.

Electro Drums Combinator Controls

Pitch Bend: Unassigned.

Mod Wheel: This controls the Band Count on the Vocoder from 4 bands (no modulation) to FFT (512) when pushed all the way up.

Rotary 1: Voc Filter – This controls the Noise Mod from the Vocoder’s Modulation Oscillator. This can be used to shape the sound of the Drum Filtering through the Vocoder.

Rotary 2: Shift – This controls the Shift parameter on the Vocoder. Again, this can be used to sculpt the sound of the Drum’s Vocoder Filter.

Rotary 3: Pattern Seq. – This knob is used to switch between all 31 patterns in the Redrum. You can assign any patterns you like in the redrum and it will be tied to this knob. In this way, when you’re playing the drums, you can switch on the fly. In my drum kit, I threw in a bunch of random patterns so that you can hear something playing no matter where the knob is set. Note that if the knob is turned fully left, an empty pattern plays (essentially turning the Pattern Sequencer off and silencing all the drums). This is good if you need an empty spot in your song.

Rotary 4: Master Level – This controls the master level of the Submixer, so that you can adjust the drum level globally.

Button 1: Doubler – This doubles all the drum beats via the Thor Step Sequencers. When on, the steps are set to 2, which will play two beats anytime the drum is triggered. When off, only one drum beat will occur when the drum is triggered.

Button 2: Alt Filter – This quickly switches the filters used to modulate the Vocoder, as well as adding a Scream and Reverb effect to the drums. I wanted to make this drum template as versatile as I could, so I thought why not add a completely different sound in the Combinator for some fun. It gives the drum sounds a completely different and more electronic (less organic) sound.

Button 3: Master Bypass – This button controls the Mastering (M Class) devices, as well as the Vocoder filter. If you don’t want to add any mastering or Vocoder Filter to the drums, turn this button on. The Drum sounds are then completely dry (or as they originally sound via the Thors). Leave it off if you want the drums compressed, EQ’d and Vocoded.

Button 4: HH FX – I added some Phaser FX to the High Hats just to give them a different feel. You’ll just have to try it out and see if you like it. I thought it was a cool sound, so I kept it in there as an option for you.

So let me know what you think of this setup, and if you have any other ideas or have some great tips for drum creativity, please feel free to share your comments.

Good Luck!

Ed’s Reasonable Help 2010

EditEd4TV’s Reasonable Help for 2010
Available now at: http://www.baumanproductions.com/reasonablehelp.html


It’s rare that I advocate a specific refill. I can actually count on my fingers how many refills I rely on in my own work, and would rather try and figure out the answer myself or else try building my own instruments and combinators. But when it comes to inspiration and I’m looking to expand my knowledge I can’t think of anyone better than Ed Bauman. In his latest refill offering “Reasonable Help 2010” he provides you with 50 amazing combinators which push the envelope on what Reason can do. And he sets off to prove that most anything you can think of in your head can be worked out in Reason routings and device Combinations.

Without a doubt this is one of the best refills I’ve seen, and it’s not because it’s packed to the brim with a ton of new sounds or new patches. If you’re looking for new sounds, there are other refills out there that can give you off-the-shelf sounds. This refill is aimed straight at the Sound designer who wants to learn how to route devices in reason. It’s also aimed at solving common problems that people face in Reason. How to create a noise gate? How do yo scrub your audio, how do you make reason strum a guitar? All of these questions and more are answered. Other common questions from the forum are answered too. How do you put your vocals through a vocoder to get that Telephone voice? Want an instant Steam Locomotive with Whistle and train speed included. It’s all in there.

In a nutshell, if you’re willing to sit down and look through the patches to see how they are routed, and read the accompanying documentation, you’re going to learn some new tricks and better your Reason skills. If you’re just starting out, you may not entirely be ready for this one. But if you have a decent grasp of how to route your devices together and want to take yourself to the next level, these 50 patches will open your eyes to some brand new ideas. The true benefit of Reasonable Help 2010 is in the educational value. What better way to expand your Reason knowledge than having a 50-session class provided by one of Reason’s top gurus: Ed. He’ll hold your hand the entire way, and speaking from personal experience, he’s always there to help if you get stuck. I highly recommend you purchase your copy now. At $50.00 it’s an awesome deal.

Ed was gracious enough to provide a free .rns file from Reasonable Help: EditEd4TV_GateModifier.

EditEd4TV's Reasonable Help Gate Modifier Combinator
EditEd4TV’s Gate Modifier Combinator

Ed also had some comments about this file, as well as some great insights into his work flow:

The reason I made this Gate Modifier patch was simple – the Slice Output of Dr. Rex is basically useless for triggering synth pads.  I wanted something that could easily serve as an “in-between” module to transform CV data into something more useful.  The concept is pretty simple: just take incoming slice data, which is basically just a small millisecond CV burst, and send that to Thor’s Step Sequencer CV Input Gate In Trigger.  That small gate burst is perfectly fine for triggering the Step Sequencer.  That trigger is used to trigger Thor’s Amp Envelope, which is held open depending upon the value of Combinator knob 1, which adjusts the Step Sequencer Gate Length value.  The Amp Envelope attack and release values are adjustable as well.  There’s also Gate Strength, which can be inverted so it sends negative CV values instead of positive values, which can be used as sort of a “ducking” feature.

So how do I go about this sort of thing?  Well, most of my patches always begin with a need, a want, a solution to a problem.  I always start with a Combinator with a Mixer inside.  I may ditch the Mixer later if it isn’t needed, but that’s the default.  At the heart of most of my problem solving solutions is Thor, since it offers so many incredible ways to take incoming audio or CV and manipulate it to death.  There’s almost always a way to solve a problem with Thor.
 
So sometimes I’ll just decide I’m going to tackle a problem, I’ll make the Combi and put the Mixer in there, along with one Thor, and I’ll just sit there and think, maybe for a few seconds, or maybe an hour or two… just thinking.  I’ll experiment along the way, maybe draw things out on paper so it makes sense visually instead of just mentally (sometimes if I’m away from home and I’m sitting somewhere on a video shoot I’ll start drawing out design concepts that just come to me, I’ll draw them out on paper, you can see 3 of them on the last few pages of the RH’10 PDF manual).
 
The worst is when inspiration hits when I’m driving, and all I can do is dictate the concept into my cell phone, which is somewhat difficult depending on the complexity of the design stuck in my head.  So, once I’ve come up with a solution, and I design it in a Combinator, I’ll sit and stare and think for maybe an hour or so, thinking… “If I’m the end user of this, what will I hate about it, what will I want, what would I change”, and I go about solving those problems.  Sometimes this can be really frustrating because I’ll come up with additions before I stumble upon some solutions, so I may end up programming knobs 3 and 4 to do something, then I discover it’s a much better solution if I have, say, the Mod Wheel do the same job as those two knobs, so I have to redesign my modulation routings and perhaps some CV cabling as well.
 
Eventually I land on the final design, and I’ll have some buttons or knobs left over empty, so I’ll try to come up with some fun stuff at that point.  That’s when I wish the Combi Pitch and Mod Wheels had labels as well, since they’re stuck being labeled via the Combi skin… Sometimes I use those two wheels for other things and I’m too busy/lazy to design a custom skin for those different purposes.  Also, I try to avoid tying up a knob with the “do not touch!” label, though sometimes it’s necessary.  And that’s when I wish the Combinator was 8×8 instead of 4×4, and I wish it had, say, 8 CV inputs and 8 CV outputs on the back as well, not necessarily tied to the knobs if you don’t want them to be.

And here is an explanation of the inner workings of the rns file, direct from Ed’s PDF documentation:

EditEd4TV_GateModifier

This Combinator allows you to modify/extend Dr. Rex gates into a more useful state.

Knob 1 “Gate Length”: This knob adjusts the gate length.

Knob 2 ” Gate Strength”: This knob adjusts the gate strength.

Knob 3 ” Gate Attack”: This knob adjusts the gate attack time.

Knob 4 ” Gate Release”: This knob adjusts the gate release time.

Button 1 “2 Ordered”: This button switches the gate mode from single to two varying triggers.

Button 2 “16 Random”: This button switches the gate mode from single to 16 random triggers.

Button 3 “n/a”: This parameter is unassigned.

Button 4 “n/a”: This parameter is unassigned.

Pitch Wheel: This wheel is unassigned.

Mod Wheel: This wheel is unassigned.

Details: This Combinator is particularly useful when used with a Dr. Rex loop player. On the rear panel of Dr. Rex you’ll find a Slice Gate Output. Note that this CV signal is routed to the Spider CV Slice Splitter – this is purely for demonstration purposes. Note that the first split output is routed directly to Thor 1 Pad’s Filter 1 Frequency Modulation Input, whereas the second split output is routed through the GateModifier, then into Thor 2 Pad’s Filter 1 Frequency Modulation Input. Play back the demonstration sequencer and solo Mixer channel 1. This is the drumbeat that we’re using to send gate signals to the two Thor units. Return the Mixer back to normal and now solo Mixer channel 2. This is Thor Pad 1. Notice very short and barely useful clicks in the audio signal, which is a result of the very short slice gates affecting Thor’s filter. Return the Mixer back to normal and now solo Mixer channel 3. This is Thor Pad 2. Notice the much more active and useful affects on the audio signal, which is a result of the GateModifier creating better gate signals.

Inside the GateModifier you’ll find a single Thor unit. CV control needs to come directly into this Thor, into the Step Sequencer CV Input Gate In (Trig) jack. Each incoming slice gate will trigger a step in the Step Sequencer. This first step is set for a gate of 0%, but Combinator knob 1 (Thor Rotary 1) is used to adjust this gate length up to 100%, thereby creating much more useful gate lengths. This new gate signal triggers Thor’s Amplitude Envelope, which is then routed to both CV 1 and CV 2 outputs, where CV 2 is a polar opposite of CV 1. Though not used in this demonstration, know that CV 2 output is ready for use if needed as an inverted output. Combinator knob 2 is used to trim the strength of both of these outputs. Note that Combinator knob 2 is bipolar, with no affect on strength when centered. Right of center results in positive results (with negative results from CV 2 output) and left of center results in negative results (with positive results from the CV 2 output).

Combinator button 1 is used to change the number of steps of the Step Sequencer from 1 to 2, in a back and forth pattern. Step 2 contains modified parameters that create a different result than step 1, thereby making a noticeable difference in how the gated signal controls Thor. Combinator button 2 is used to change the number of steps of the Step Sequencer from 1 to 16, in a random pattern, with all 16 steps set for variable settings that result in an unpredictable, yet still slice accurate, gate signal.

Combinator knobs 3 and 4 adjust the Amplitude Envelope attack and release times, respectively.

In our example we’ve sent the gated signal to Thor’s Filter 1 Frequency Modulation Input CV jack, but you can of course route this signal anywhere you like. You’ll find this new signal works much better than the standard slice output of Dr. Rex. This GateModifier is also useful to modify the gate signals coming out of a ReDrum, where the ReDrum channel is set for gate mode 0 (sawtooth wave). Though you can get workable results by switching the ReDrum gate mode to 1 (square wave), this potentially affects the ReDrum channels audio waveform; in the case of, say, a crash cymbal, the affect of switching the gate mode to mode 1 are more often than not unacceptable (muted crashes). The alternative is to sacrifice a ReDrum channel to use purely as a gate signal in mode 1, which may also be unacceptable. Your best option may be to use the GateModifier Combinator, allowing you to select any gate output for use.

The Dr. Rex, Spider CV, Thor units, and sequence in this file are provided simply to test the Combinator’s features.


A huge thanks to Ed for putting this package together. You truly are an inspiration to all of us Reason users. Please keep doing what you’re doing and I look forward to your future products as well. You can purchase Ed’s Reasonable Help 2010 here:  http://www.baumanproductions.com/reasonablehelp.html

8 – Auto CV (Chasing Audio)

Learn how to use the Scream’s Auto CV output to convert an audio signal into a CV signal. Also learn how Thor can be used to achieve a similar effect, and how you can use Thor to switch between different CV sources.

We don’t live in a vacuum (well maybe sometimes we do, however, for the most part we learn by experimenting with many different elements from different sources) and so this tutorial will build upon a previous tutorial on using Thor’s CV capabilities to switch between 2 different CV sources. In addition, there will be a new element which shows how the Auto CV on the back of the Scream can be used to follow the audio from a Dr. Rex. And this is really the heart of the tutorial.

The “Auto CV” feature on the back of the Scream device is an envelope follower with a twist. While most envelope followers work on Audio and in essence shape the parameters of the audio, the Scream’s envelope follower follows the audio, and then converts that to a CV signal. Before Reason 4, this was the only way you could essentially create a CV signal from an audio source. With the advent of Reason 4, you can use Thor to perform the same functions. Even so, it’s worthwhile to note how the Auto CV works in the scream, as it can still be used effectively, with the added bonus that it leaves a lighter CPU footprint, and allows you access to the Scream as an FX insert as well. Finally, I’ll touch upon how you can achieve a similar effect using Thor.

The project files can be downloaded here:  auto-cv-chasing-audio It contains three Combinators which are used as examples to show the Auto CV setups described below. A matrix is used to play a random pattern so you can hear the results. All Combinators play simultaneously through the main mixer, so don’t forget to mute or unmute the channels to hear the proper example.

Using the Scream Auto CV to convert Audio into CV

  1. Create a Combinator and a 6:2 Line Mixer. Then holding shift down, create in order a Thor, NN-XT, Scream and Dr.Rex device.
  2. Click the Show Programmer button in Thor, and turn off Oscillator 1, Bypass Filter 1, and click the “1” button next to the Filter 1 slot. Add a Low Pass Ladder Filter in the Filter 3 slot. Finally, click the Delay button to turn on the Global Delay.
  3. In the NN-XT open up the patch browser and navigate to the Factory Soundbank. Go to the NN-XT Sampler Patches > Synth Poly and open the Odd Poly patch.
  4. In the Scream device, turn off the “Damage” parameter.
  5. In the Dr.Rex device, open the Patch browser and in the Factory Soundbank, nagivate to Dr Rex Drum Loops and load the Hse40_RideBeat_130)eLAB.rx2 patch.
  6. The Front of the Rack with all Devices necessary to chase your audio
    The Front of the Rack with all Devices necessary to chase your audio
  7. We’re done with the front panel. Flip to the back of the rack, and let’s move on to routings. First, route the NN-XT’s 1/L and 2/R to the Audio In 1 and Audio In 2 on the Thor Audio Inputs, respectively. Then route the 1 Mono/Left and 2 Right from the Thor’s audio outputs to Channel 1 on the Line Mixer (left and Right, respectively). This sets up the audio to be heard. Now comes the Auto CV magic.
  8. In order for Auto CV to work, the Scream needs to have a sound source fed into it. So connect the Dr.Rex L & R audio outputs into the Scream Audio Inputs (L and R, respectively). Then connect the Auto CV output from the Scream unit into the CV 1 Modulation input on Thor.
  9. Auto CV routing to follow the Rex Audio file via CV
    Auto CV routing to follow the Rex Audio file via CV
  10. Flip the rack around and let’s set up the Thor Modulation Bus Routing Section (MBRS). Enter the following parameters on the left side of the bus:

    CV In 1: 66 > DelFBack

    CV In 1: 66 > Del ModAmt

    Enter the following parameters on the right side of the bus (just to keep things simple for now):

    Audio In1: 100 > Filt3 L.In

    Audio In2: 100 > Filt3 R.In

  11. The MBRS settings in Thor
    The MBRS settings in Thor
  12. With this setup, the Auto CV is affecting the Thor Delay Feedback and Delay Modulation Amount. To hear what the Scream is actually doing, we can set up a Combinator switch on button 1. So click the Show Programmer button on the Combinator, and click the Thor in the Device section of the programmer. Enter the following two lines in the Modulation Routing section:

    Button 1 > Mod 1 Dest Amount: 0 / 66

    Button 1 > Mod 2 Dest Amount: 0 / 66

    Programmer Modulation Routing in the Combinator
    Programmer Modulation Routing in the Combinator
  13. Now set up a Matrix to play a simple pattern using the Combinator. Turn Button 1 on to hear the Auto CV affecting the Delay. Turn it off to hear the unaffected Delay. Note that you need to have the Dr. Rex receive notes in order to have it send audio into the Scream device. By setting up the Matrix to sequence the combinator, the matrix ends up playing the Dr. Rex. So you’re all set. Alternately, if you don’t want the matrix sequencing the Combinator, you can always copy the Rex notes to its sequencer track so that the Dr. Rex is played via the main sequencer. The point is, the Dr. Rex needs to be active.

What’s happening is the Dr.Rex loop is converted to CV, and this CV is used to affect the Thor Delay. It’s a simple but powerful setup. And you don’t have to limit yourself to affect Thor parameters. I only used this as an example. You run any audio source through the Scream and then use the Auto CV to affect any other CV parameter. Also, since the Scream is not generating any audio output, it doesn’t affect the mix in any other way than a simple CV conversion (or more technically, a CV envelope follower).

Switching CV sources

Not to be one to leave well enough alone, here’s a way to extend the Auto CV idea above and have the ability to switch between two different Rex Files (2 CV sources) using the Thor. The parameters affected are the same (Delay Feedback and Delay Modulation Amount), but the Rex file used to affect the delay can be switched. Here’s how you do it:

  1. Building upon the above example, at the bottom of the Combinator stack, holding Shift down, let’s add another Scream and Dr. Rex.
  2. Next, turn off the Damage parameter in the second Scream. Also, add a different loop into the second Dr.Rex device.
  3. The front panel with two scream and 2 Dr. Rex devices
    The front panel with two scream and 2 Dr. Rex devices
  4. Flip the rack to the back, and send the Audio from the Second Dr.Rex to the Second Scream, and send the Auto CV output from the second Scream to the CV 2 Modulation input on the Thor.
  5. Now we’ll have to set up Thor to also accept the second Dr.Rex CV source. In the MBRS section, enter the following:

    CV In 2: 66 > DelFBack

    CV In 2: 66 > Del ModAmt

  6. The MBRS settings in Thor
    The MBRS settings in Thor
  7. Finally we need to use the Combinator button 1 as a switcher between the two CV sources. So in the Combinator’s Modulation Routing section, enter the following:

    Button 1 > Mod 1 Dest Amount: 66 / 0

    Button 1 > Mod 2 Dest Amount: 66 / 0

    Button 1 > Mod 3 Dest Amount: 0 / 66

    Button 1 > Mod 4 Dest Amount: 0 / 66

    Programming the Modulation Routings in the Combinator
    Programming the Modulation Routings in the Combinator

With this setup, Button 1 on the Combinator is used to switch between the 2 Scream CV sources (which in turn comes from the two Dr.Rex devices). Leaving button 1 off uses the first Scream device. Turning the button on turns off the first Scream CV source, and turns on the second Scream CV source. Note: it’s not actually the Scream that is turning off. We’re just bringing the amounts down to zero on the Thor programmer panel, which has the same effect.

It should also be noted that you can program a Rotary on the Combinator to cross-fade between the two CV sources, if you wish to have a fading effect between the two. Where you take this idea is really up to you.

Using Thor as an Audio/CV converter

Let’s say you don’t want to use the Scream, and instead want to use Thor as a “Auto CV output” or CV envelope follower. Here’s how you set that up.

  1. Starting from scratch, Create a Combinator and a 6:2 Line Mixer. Then holding shift down, create in order a Thor, NN-XT, and Dr.Rex device.
  2. Click the Show Programmer button in Thor, and turn off Oscillator 1, Bypass Filter 1, and click the “1” button next to the Filter 1 slot. Add a Low Pass Ladder Filter in the Filter 3 slot. Finally, click the Delay button to turn on the Global Delay.
  3. In the NN-XT open up the patch browser and navigate to the Factory Soundbank. Go to the NN-XT Sampler Patches > Synth Poly and open the Odd Poly patch.
  4. In the Dr.Rex device, open the Patch browser and in the Factory Soundbank, nagivate to Dr Rex Drum Loops and load the Hse40_RideBeat_130)eLAB.rx2 patch.
  5. We’re done with the front panel. Flip to the back of the rack, and let’s move on to routings. First, route the NN-XT’s 1/L and 2/R to the Audio In 1 and Audio In 2 on the Thor Audio Inputs, respectively. Then route the 1 Mono/Left and 2 Right from the Thor’s audio outputs to Channel 1 on the Line Mixer (left and Right, respectively).
  6. This time, connect the Dr.Rex L & R audio outputs into Thor’s Audio Inputs (3 and 4, respectively). Then connect the CV 1 output to the CV 1 Modulation input, both input and output are on Thor, so yes you can route a CV out on Thor to a CV in on the same Thor.
  7. The back of the rack - routing Thor to work as an Auto CV envelope follower
    The back of the rack - routing Thor to work as an Auto CV envelope follower
  8. Flip the rack around and let’s set up the Thor Modulation Bus Routing Section (MBRS). Enter the following parameters on the left side of the bus:

    CV In 1: 66 > DelFBack

    CV In 1: 66 > Del ModAmt

    Enter the following parameters on the right side of the bus:

    Audio In1: 100 > Filt3 L.In

    Audio In2: 100 > Filt3 R.In

    Audio In3: 100 > CV Out1

    Audio In4: 100 > CV Out1

    The MBRS settings in Thor
    The MBRS settings in Thor

With this setup, the Auto CV is contained within Thor. The Thor is using the Audio from the Dr.Rex directly, and then converting the Audio source into a CV signal which is then sent back into Thor to affect the Delay Feedback and Delay Modulation Amount.

One note here: if you test out the sounds from the Thor CV setup versus the Scream CV setup, you’ll notice that the Thor CV is much smoother. I’m not sure why that is. It may be a difference in the way I’ve routed things, or a difference in how the Scream handles the Auto CV output feature. But there is definitely a difference in sound. Of course this could be pilot error and I may not have the connections set up correctly. I admit my mistakes all the time. But at least it gets you pretty close.

So any other ideas you have for using the Auto CV output on the Scream device or setting up Thor to convert an Audio signal into a CV signal? This is a very basic example, but it opens up a lot of potential with other sound sources / CV destinations. For example, if you have a CV destination that you want to track to the lead vocals in a song, you can do it easily. So what other possibilities are out there?

Wonderland

This is a cross between a beat or rhythm generator and a synth. I wanted to come up with a template to use as a hybrid that could be used to effect a great range of sounds and possibilities all from within a single combinator. Very light weight and easy to use. Great as a Combinator Template for your own sounds.

Download the Combinator: wonderland

Description: This is a cross between a beat or rhythm generator and a synth. I wanted to come up with a template to use as a hybrid that could be used to effect a great range of sounds and possibilities all from within a single combinator.

Features: Wonderland uses a Rex file for the driving rhythm behind a soft sounding synth. The NN-XT provides the synth layer, and the Rex provides the rhythmic layer. You can also adjust the filter frequency and a separate Pumping element in the mix. Here’s how the controls operate:

Pitch Bend: The pitch bend affects only the NN-XT synth layer, and pushes up or down by 4 semitones.

Mod Wheel: The mod wheel affects a few different parameters. Adjusting the wheel upward yields a more dreamy high-pitched sound.

Rotary 1: This controls the “Crudge” feature, which is a Sine wave sound shaper in Thor. Turned all the way left and you get no sound shaping applied. Turned fully right, and you get a grungy distortion to the synth layer. Note that higher filter frequencies will yield more distortion. Having the filter frequency Rotary all the way left will provide very little changes to the grunge effect.

Rotary 2: Controls the level of the Rhythm section (Rex file). All the way left and the Rex audio is essentially turned off. All the way right and the Rex can be heard fully (100).

Rotary 3: Controls the filter frequency of the synth layer. This Rotary is controlling Filter 3 in Thor. Turned all the way left and the Filter Frequency is fully cut off. Turned all the way right and the Filter Frequency is fully open.

Rotary 4: Adjusts the pumping of the Rhythm layer, however, the pumping is affecting the synth layer, so even if the Rex audio from Rotary 2 is all the way off, you can still get a Thumping from the Synth using this Rotary.

Button 1: When off, the Synth Delay (the Thor Global Delay) is not synced. When turned on, the Delay is synced to the beat of the main sequencer.

Button 2: This controls the distortion from the Scream device. Turned off you get no distortion. Turned on you get a Low Frequency Resonator distortion FX applied to the Rex Rhythm layer. This does not affect the Synth layer.

Button 3: This is an octave shift for the Rex Rhythm layer. When off, the Octave is set to the default (4). When on, the Rex loop plays 1 octave higher (5). This does not affect the Synth layer.

Button 4: This provides an “Underwater” feel to the Synth layer. Essentially it controls the Global Chorus in Thor. Left off, the Synth is untreated. Turned on, you get a very warbly chorus applied to the Synth which can only be described as a very quick oscillation as though you were under water.

Usage: You can use this any way you like. But mainly it provides a Synth/Rex Loop Rhythm for your tracks.

Other Notes: To edit the patch and use it as a template, switch out the NN-XT patch for some other synth sound you like (or any other sound patch or sound device, for that matter). You can also vary the rhythm layer by changing the Dr.Rex patch to something different as well. A final note: take a look at the CV setup happening with the Dr.Rex, Scream, and Thor, then look at the routings in Thor’s Modulation Bus. This provides a way you can use the Scream’s Auto CV to convert the Dr.Rex Audio into a CV source that is applied to several parameters within Thor to affect the NN-XT’s sound. Might provide some further inspiration for you.

As always, please let me know what you think or let me know if and how you use this in your own projects. Happy Reasoning!

7 – Adjustable CV

Explore how to use Thor as a CV merger / splitter and Pass-Through, allowing you to set up the Combinator Rotaries so you can adjust CV levels and automate those CV changes. All of this without even breaking a sweat.

Let’s have the capability to freely adjust and automate some CV Trim Pots.

I knew that would get your attention. What? I can’t freely adjust and automate the CV trim pots on the back of the rack. What the hell is he talking about? Has he lost his mind.

Yes. I’ve lost my mind long ago. But I’ve recently found it and I’m here to try and provide a few workarounds to do things such as creating adjustable CV levels, as well as provide the ability to adjust merged and split CV sources. All without having to resort to the CV Merger/Splitter. Sound interesting? Well then let’s dig in. . .

When it comes to Thor, you’ve got a very powerful and, in my opinion, wonderfully versatile and variable sounding synth. But Thor can do a lot more than generate great synth sounds. It can perform a set of functions that no other device in the Reason arsenal can. In a previous tutorial I walked through various ways you could use Thor as an audio filter and explored a few practical uses of routing your audio through Thor. Here I’m going to explore how to use Thor as a CV merger / splitter, and furthermore, how using Thor can allow you to automate your CV trim pots, without even breaking a sweat.

The project files used for this tutorial can be downloaded here: adjustable-cv-examples. There are 6 Combinator Examples, outlining the types of tricks we’ll be doing with CV, Thor, and the Combinator Programming below. There is also the original sound source so you can compare that to all the other sounds in the 6 Combinator Examples. The Matrix tied to all the Combinators plays a single note “Drone” sound at 1/4 resolution. In order to test the examples, mute out the other channels in the main mixer except the one you are testing.

Using Thor as a CV Merger

  1. Create a Combinator, and inside the Combinator, create a 6:2 Line Mixer. Then holding shift down, create a Thor. Without holding shift down, create a Malstrom. Then once again, hold shift down and create a Subtractor.
  2. On the Subtractor, set Polyphony to 0, and press the Sync button on the LFO 1. Then duplicate the Subtractor 3 more times. On each new subtractor, select a different LFO waveform. You’ll now have 4 Subtractors with 4 different Waveforms.
  3. On the Malstrom, open the “Electric Yawn” patch under the Factory Soundbank (in the Malstrom Patches > FX folder). This is going to be our sound source.
  4. On the Thor, Initialize the Patch, and click the Show Programmer button. Turn off the Oscillator 1, and bypass Filter 1. Also click the “1” button next to Filter 1. Finally, add a Low Pass Ladder Filter into the Filter 3 slot. We’ll use 4 LFOs to affect the Filter 3 Frequency from the Thor, which in turn affects the Filtering of the Malstrom sound.
  5. Time to flip the rack around and do a little routing. Move the two audio plugs going into the Line Mixer, and plumb them into the Audio in 1 and 2 on the Thor inputs. Then plug the 1 Mono / Left and 2 Right outputs from the Thor into the Audio in on the Line Mixer’s first channel. Audio routing through Thor is setup.
  6. Next, on the back of the Subtractors, route the LFO 1 Output to the CV inputs on the back of the Thor; 1 for each of the 4 CV inputs on the back of the Thor.

    Merged CV Routing through Thor
    Merged CV Routing through Thor
  7. Flip the rack back to the front, and let’s move to the Thor’s Modulation Bus Routing Section (MBRS). On the right side of the mod bus, enter the following settings: Audio In1 > 100% > Filt3 L.In and on a second line on the right enter Audio In2 > 100% > Filt3 R.In. This sets up the Audio to be filtered through Thor.
  8. Next, on the left side of the MBRS, enter the following settings:
  9. CV In1 > 0 > Filt3 Freq.

    CV In2 > 0 > Filt3 Freq.

    CV In3 > 0 > Filt3 Freq.

    CV In4 > 0 > Filt3 Freq.

    Thor MBRS for the CV routings (left) and audio pass-through (right).
    Thor MBRS for the CV routings (left) and audio pass-through (right).
  10. Now let’s turn to the Combinator Programming. Let’s set up each Rotary to control the amount of CV applied to the Filter 3 Frequency. In this way, the Rotaries will work as the CV trim pots. So here’s where the magic happens. Set up the following modulation for the Thor:

    Rotary 1 > Mod 1 Dest Amount: 0 / 100

    Rotary 2 > Mod 2 Dest Amount: 0 / 100

    Rotary 3 > Mod 3 Dest Amount: 0 / 100

    Rotary 4 > Mod 4 Dest Amount: 0 / 100

    Combinator Programming
    Combinator Programming

This modulation setup means that you can control the Amount in the Thor Modulation Bus via the Rotary controls. It’s usually overlooked by many people. But at the bottom of the Thor’s Modulation Bus, after you scroll down through all of Thor’s parameters near the bottom lies the Modulation Destination Amount and Scaling Amount. In this way, you can control any one of the 13 modulation routings (amount and scaling).

To sum up, this Combinator we’ve created will use all 4 LFOs from the four Subtractors in unison to affect the Filter 3 Frequency of the Thor, which in turn affects the filtering of the sound source from the Malstrom. The true beauty of it all is that you can control the CV level using the Rotaries on the combinator. This works like a CV trim knob you’d find on the back of the rack.

Using Thor as a CV Pass-Through

Merging the CV signals and then controlling their level with multiple Rotaries on the Combinator are all well and good. But let’s say you don’t want to control any Thor parameters. What if you want to control an external CV source. For example, you want to control the “Shift” parameter on the Malstrom with a Subtractor LFO. This is pretty easy. Just route a CV connection from the Sub’s LFO to the Mal’s shift parameter on the back of the rack and you’re done. But you can’t control the Trim pot with this setup. So using the same kind of setup as above, here’s how you can use Thor as a Pass-Through for your CV source/destination, and at the same time tie the CV amount to a Combinator Rotary.

  1. Create a Combinator, and inside the Combinator, create a 6:2 Line Mixer. Then holding shift down, create a Thor. Without holding shift down, create a Malstrom. Then once again, hold shift down and create a Subtractor.
  2. On the Subtractor, set Polyphony to 0, and press the Sync button on the LFO 1. Select the Pulse Width waveform for the Subtractor.
  3. On the Malstrom, open the “Electric Yawn” patch under the Factory Soundbank (in the Malstrom Patches > FX folder). This is going to be our sound source.
  4. On the Thor, Initialize the Patch, and click the Show Programmer button. Turn off the Oscillator 1, and bypass Filter 1. Also click the “1” button next to Filter 1.
  5. Time to flip the rack around for our routing. On the back of the Subtractor, route the LFO 1 Output to the CV 1 Modulation Input on the back of the Thor; Then connect the CV 1 Modulation Output from Thor to the Shift Modulation Input on the Malstrom. Also turn the Shift Trim knob all the way right, so that it is completely controlled by the CV.
  6. Using Thor as a CV Pass-Through: Routing on the back of the rack
    Using Thor as a CV Pass-Through: Routing on the back of the rack
  7. Flip the rack back to the front, and let’s move to the Thor’s Modulation Bus Routing Section (MBRS). We only need one setting entered on the left side of the MBRS:
  8. CV In1 > 0 > CV Out1.

  9. Now we need to add one final programming setting on our Combinator. Open the Combinator’s Programmer, and set up Rotary 1 to control the amount of CV applied to the Shift parameter on the Malstrom. In this way, as before, the Rotary operates as the CV trim pot, moving from left (no CV applied) to fully right (100% CV applied). Set up the following modulation for the Thor:

    Rotary 1 > Mod 1 Dest Amount: 0 / 100

If you move the Rotary, you’ll hear the LFO  operating on the Shift parameter of the Malstrom. So now using this technique you can apply CV from any source to any device that has a CV input destination on the back of the rack, and also adjust the level of that CV source.

Note: if you are trying to control the Level parameter, it’s best to control your level from the Main mixer to which the sound source is connected. This way, when the Rotary is set all the way left (zero), the mixer’s channel fader will be used for the level. When all the way right (at 127), the Level is controlled 100% by CV. If, on the other hand, you try to control the level via the Malstrom’s Level CV, when the Rotary is at zero, no sound will be heard. When the Rotary is all the way right, you will hear 100% CV. So depending on what outcome you want, you may want to set this up one way or the other. The downside to routing CV from the Combinator to the Mixer’s Level CV destination is that you are setting up external routing from the Combinator. Not a problem if you save the file as an .rns instead of saving the Combi on its own. You can see this Level Pass-Through set up in one of the Combinators in the Project Files.

Using Thor as a CV Splitter

Next, we’re going to look at how you can split CV signals with Thor. This time, we’re going to send 3 CV signals to adjust 3 different CV destinations. Then we’re going to use the Combinator Rotaries to adjust the CV source level (thereby adjusting the CV amount applied to all 3 destinations at once).

  1. By now you should be getting used to the type of setup we’re using. This time we’ll create the Combinator, then inside create the Line Mixer, Thor, Malstrom (with Electric Yawn patch), and Subtractor (to use the LFO 1). Alternately, you can select and copy the Combinator from the previous example, since it already has this kind of setup created.
  2. Now we’ll flip to the back of the rack and connect the LFO1 Modulation output from the Subtractor to the CV 1 input on the Thor. Now, connect the Thor CV 1 output to the Malstrom Pitch CV input. Connect the Thor CV 2 output to the Malstrom Index CV input. Connect the Thor CV 3 output to the Malstrom Shift CV input. Finally, turn these three CV trim pots on the Malstrom all the way right.
  3. Using Thor as a CV Splitter: CV routing on the back of the rack
    Using Thor as a CV Splitter: CV routing on the back of the rack
  4. Flip the rack around again, and in the Thor MBRS, enter the following settings:
  5. CV1 > 0 > CV Out1.

    CV1 > 0 > CV Out2.

    CV1 > 0 > CV Out3.

  6. In the Combinator Programming, you can set it up 2 ways, depending. If you want to control all 3 parameters’ CV levels at once with a single Rotary, Select Rotary 1 as the source on 3 different programmer lines. Then create 3 different Destinations: Mod 1, Mod 2, and Mod 3 Dest Amount. Enter 0 and 100 for the Min / Max settings respectively. If, on the other hand, you want to have separate control over the 3 different parameters, You can change the Source so that Rotary 1 controls Mod 1 (Pitch), Rotary 2 controls Mod 2 (Index), and Rotary 3 controls Mod 3 (Shift). It all depends how you want things set up.

Note: I haven’t yet tried this, but I think you can invert the signal (just like the spider CV splitter has an “inverted” CV out). To do this in our setup above, you can set the min / max values from -100 to +100 respectively. This way, your Rotary knob will be at 0 when dead center. Moving the knob left will invert the CV signal, and moving the knob right will give a positive signal. Like I said, I haven’t tried it out, but I think I’m on solid ground here.

So there you have it. Thor can merge CV signals together, split CV signals to send the same signal to multiple destinations, and can be used as a pass-through for CV signals to affect other devices via CV. While you can do all of this with the Spider Merger/Splitter, the advantage Thor offers is that you can adjust the level of CV incoming from the source and applied to the destination, and automate this in the sequencer via the Rotaries on the Combinator. This is something that cannot be done using the Merger/Splitter alone. I hope this leads you into other avenues of exploration with Thor and CV modulation. If you have any other ideas that come to mind, please let me know. And if you have anything to add to this, please comment. I’d love to hear your thoughts.

6 – Vocoder Arp Machine

A very flexible Combinator mashup that plays an Arped up Thor run through a Vocoder. A second Thor is used to modulate the sound. Use this Combinator as a template to drop in your own Thor patches and then take it out for a spin at your next live gig. All the Combinator parameters are assigned to toy with the Arp / Vocoder settings. After all, the more flexible the Combinator is, the more use you will get out of it.

I was looking through eXode’s fabulous collection of free patches and combinators in his massive synthesis refill (available from the Propshop’s Free Refill Download Page – A must have for anyone who is looking for a great collection of new sounds!) when I came across a few patches that were hidden away with (arp) in parentheses after the patch names. Being one who loves a good arp sound I started to delve a little deeper into how it was put together. So this became the inspiration for this project. It fuses an arp with two thors — one for the modulation and another as the carrier, and both Thors feed through a Vocoder to the final output.

Now taking things a few steps further, I decided to deviate from what eXode did and add on a few modifications. Firstly, the sounds I used were completely my own (I didn’t want to copy eXode’s brilliant work). And I then took things another step further by assigning parameters to the Combinator rotaries and buttons. This way, you can use the Combi as a performance tool as well. And you can experiment with your own Thor sounds for the carrier and change the way the vocoder operates by toying with the Thor synth parameters, creating your own endless variety of Arp Vocoder machines.

So this is a bit of a mashup, being a Combinator that plays just fine as it is, or used as a template where you can drop in your own Thor patches. Finally, it can be used in live performance, since all the Combinator parameters are assigned for this purpose. After all, the more flexible the Combinator is, the more use you will get out of it.

The project files can be downloaded here: vocoder-arp. It contains an .rns file with a single Combinator which is pre-programmed to most of the major parameters you’ll need to adjust the Filter Frequency, Arp and Vocoder parameters.

Setting up the Vocoder Arp Template.

  1. First, create a Combinator, then inside the combinator create a 6:2 Line Mixer, Thor, RPG-8 Arpeggiator, BV512 Vocoder, and then holding Shift down (to disable auto routing), create another Thor. Flip the rack around and route the bottom-most Thor’s 1 Mono / Left Output to the Modulation input on the Vocoder. This is the basic setup for the arped-up vocoder. The first Thor in the Combi is the carrier, and an Arp is tied to this Thor. In other words, this is the main sound going into the Vocoder. The second Thor in the Combi is used to Modulate that Carrier sound through the Vocoder.
  2. Next, holding Shift down, create two Spider CV Merger/Spliters below the Combinator’s Line Mixer. Then hold Shift down and create a Matrix at the bottom of the stack. Set the steps to 4 and the resolution to 1/4th. Switch the Matrix mode to Curve, flip the rack around to the back and switch the curve mode to Bipolar. Then flip the rack around again and set up a curve pattern so that step 1 and 3 are +64 and step 2 and 4 are -64.
  3. The front of the Vocoder Arp with all devices
    The front of the Vocoder Arp with all devices
  4. Flip the rack around and on the first Spider connect the Arp Note CV out to Split A in and the Arp Gate CV out to Split B in. Connect one of the splits from Split A to the Carrier Thor’s CV in. Then connect the inverted split from Split A to the  Carrier Thor’s CV1 Modulation input. Connect one of the splits from Split B to the Carrier Thor’s Gate input, and another split from Split B to the Carrier Thor’s CV2 Modulation input.
  5. On the second Spider connect the Curve CV output from the Matrix to Split A’s input. Then connect one of the splits from Split A to the Split B input on the same Spider. Connect another split from Split A to the Vocoder Hold input. Connect the third split from Split A to the Carrier Thor’s CV3 Modulation input. Then connect the inverted split from Split A to the Arp’s Velocity CV in. on the Spider’s Split B, connect the inverted split to the Arp’s Octave Shift CV in. That just about does it for the CV routings. Luckily you can see the Combinator for yourself when you download the project files, because that was a mouthful. But it sounds more complex than it actually is.
  6. Moving to the Arp, and while you’re on the back of the rack, remove the CV cables from the Mod Wheel and Pitch Bend CV out. This way when you use the Pitch Bend, it will only affect the Thor Carrier’s Pitch Bend setting. Now flip the rack around again. Set up the Arp with an Octave Range of 2, and Insert set to Low. On the Vocoder, set the Attack to 8.
  7. The back of the rack with all the routings in place
    The back of the rack with all the routings in place
  8. Now we move to the Combinator programming. Click the Show Programmer button and enter the following settings:

    For the Thor Carrier:

    Performance Controllers > uncheck the Mod Wheel

    Rotary 1 > Filter 1 Freq: 0 / 127

    Rotary 2 > Amp Env Attack: 0 / 25

    Rotary 2 > Amp Env Decay: 50 / 27

    Rotary 2 > Amp Env Release: 18 / 27

    Button 1 > Filter 1 Env Amount: 28 / 100

    Button 4 > Delay Sync: 0 / 1

    For the Arp:

    Rotary 3 > Gate Length: 10 / 115

    Mod.W > Synced Rate: 5 / 15

    For the Vocoder:

    Rotary 4 > Shift: -20 / 20

    Rotary 4 > Decay: 80 / 127

    Button 2 > Band Count: 3 / 1

    For the Thor Modulator:

    Performance Controllers > uncheck the Pitch Bend and Mod Wheel

    For the Matrix:

    Button 3 > Pattern Select: -1 / 0

  9. The Combi's mod programming for the Thor Carrier (left) and Arp (Right)
    The Combi's mod programming for the Thor Carrier (left) and Arp (Right)
    The Combi's mod programming for the Vocoder (left) and Matrix (right)
    The Combi's mod programming for the Vocoder (left) and Matrix (right)
  10. Now flip the rack to the front now, and load up your favorite patch in the Thor carrier. Usually a bright lead will work best, but experiment with any sound you like. You can take a look at how I programmed the Thor in the image below. I won’t go into all the settings that were used. You can pretty much see them here. However, there are some core settings that are needed in the Modulation Bus Routing Section (MBRS) in order to have the Combinator function properly. On the right side of the Bus, create the following routings*:

    CV In1: -32 > Del Rate

    CV In2: -56 > Del ModAmt

    CV In3: 50 > Amp Pan

  11. The front of the Thor Carrier
    The front of the Thor Carrier
  12. Add a matrix below the Combinator so that it is playing the Combi. Then enter a pattern and hit play. This tests out the sounds of the Combi as you experiment with your Carrier and Modulator. For the modulator, you usually want something atonal or heavy on the noise. Unmusical is best. Droning is perfect to affect your carrier signal. This is the fun part where you toy with the Thor until you get something you like. The nice thing is that you have a wide variety of sounds to choose from using the Thor synth.

An explanation of the Combinator Programming

Pitch Bend: This affects only the Thor Carrier as you would expect a pitch bend to operate.

Mod Wheel: The Mod Wheel controls the Arp’s Synched Rate from 1/4 to 1/128th. You can use this as a performance controller to create some interesting arp variations. Let your ears be your guide on this one.

Rotary 1: This controls the full range of the Filter 1 Frequency from the Thor Carrier. Fully left and the filter is closed, fully right and the filter is fully open.

Rotary 2: This controls the Amp’s Attack, Decay, and Release from the Thor Carrier. Fully left and you’ll have very short ADR setting. Fully right and you’ll have much longer ADR settings

Rotary 3: This controls the Gate Length on the Arp. This is one of my favorite settings to play with because it can drastically alter the sounds coming from the Arp. Fully left and you have very short note lengths where the notes are staccato. Turn the knob fully right and you’ll have very long notes – to the point where the notes blend into each other much more smoothly (legato).

Rotary 4: This controls the Shift and Decay of the Vocoder at the same time, affecting the phase of the sounds you hear. This actually shifts the filters of the Vocoder’s Carrier signal down (turning the knob left) or up (turning the knob right). This can be a fun parameter to play with, and you’ll have to experiment to hear what sounds pleasant to you.

Button 1: This controls the filter envelope for the Thor Carrier’s Filter 1. Use it as a sound mode switch, and as with the Rotary 4, you’ll have to hear what sounds pleasant to your ears.

Button 2: This adjusts the band count of the Vocoder. When off, Vocoder has 32 bands. When turned on, the Vocoder has  8 bands. One note about this button: it takes a little time to catch up with itself when you alter the bands. So this may not be great for performance, and you might want to keep this button either on or off. But it’s great fun to test out your sounds through different band counts. If you don’t like these settings, you can change them in the Combinator’s Programmer to switch between any 2 bands you like.

Button 3: For lack of a better word, I named this button “Slider” — as it sounds like the notes from the Arp are being slid on the last beat of the bar. In addition, the Slider button will Pan the sound from left to right in the stereo field based on the Panning settings that were set up in the Carrier Thor’s MBRS. Remember that CV3 in we set up in the Carrier Thor? That’s affecting the Pan of the signal. In addition, the Matrix we placed at the bottom of the Combinator Device Stack is waving the sound up and down like a pulse wave. With a resolution of 1/4, the signal is synched to the 4 beats of a 4/4 tempo. But the Slider does a bit more than that. It also controls the Hold parameter of the Vocoder via CV. This means that on the fourth beat of the bar, the Vocoder is held for the duration of that last beat (one full 1/4 note). Finally, it also controls the Velocity and Octave Shift of the Arp. Yep. One of those spiders and the matrix were set up to perform a simple switch. But I thought it was a pretty cool way to affect the signal. When you turn the button on, it starts up the Matrix pattern to control everything via CV. When you turn it off, the Matrix doesn’t play any pattern at all, essentially shutting down the CV triggers.

Button 4: Finally, we have a simple switch which either keeps the Global delay of the Thor Carrier free running (when left off), or synched (turned on).


* One note about switching the Carrier Thor’s patch. If you switch the patch, you’ll have to remap the settings in the Modulation Bus section for the CV1, CV2, and CV3 sources (all the settings on the right side of the Modulation Bus section). Otherwise, the Delay and Slider functions won’t work properly. Alternatively, you don’t have to switch the patch at all. You can play with the settings in the note / global sections of the Thor until you come up with a sound you like. Point is that since this Combinator is so heavily programmed, switching patches requires a little more tweaking than normal.

Switching patches in the Modulator Thor won’t require any remapping because none of its parameters are used externally.

Any thoughts on this setup? Any ways you can see to improve it? Let me know what you think. . .

5 – Create a Grain Sampler

Learn how to create your own homemade grain sampler. This allows you to take a single sample, and affect the playback, sample start position, Repeat length, Grain Length, and Filter Frequency, among other things.

If you’ve ever used the Malstrom in your projects, you’ll undoubtedly see the benefit of grain synthesis. It’s like sound design under a microscope, as you can take a very short piece of sound and chop it up into little bits and start/stop the playback where you like. The fact that you can’t add your own grains into the Malstrom is somewhat disconcerting, but there’s a simple way you can create your own grain sampler, where you can add any sound and use that sound as a grain. This can be very effective in adding some new creative spark to your musical projects. And it opens you up to adding any sound you like and deconstructing it as you see fit. So let’s see how we can do this.

The files used for this project can be downloaded here: grain-samplers. It includes 4 Combinators that are set to play a clip of random notes on the sequencer. To try each one out, you’ll have to mute all the other Combinators via the Main mixer channel. I’m sure this is self-evident, but it never hurts to explain it here. As always, this is open source so feel free to use it in your own projects. Just please provide a link back here or a credit or kudos of some kind. After all, I do this for free. 🙂

Creating the Basic Grain Sampler

  1. Start by creating a Combinator, and in the Combinator create an NN19, Subtractor, and Matrix in that order. 
  2. The NN19 is what we will use to contain the sample or “Grain Table.” This is our sound generating device. So starting there, initialize the device so we have a base from which to start. Bring the Polyphony down to “1,” and set the Spread Mode to “jump.” Finally, change the Pitch Bend  Range to “0.” Don’t worry, I’ll explain why we made all these settings after we’ve set everything up.
  3. Load up your favorite sample into the NN19. You only need one. Alternately, you can wait until the end of the setup to load your favorite sample. If you load the sample at the end of this procedure you can then test out the various samples and play around with them at will using the Combinator rotaries that are going to be setup in just a minute. But for now, just have something loaded so you hear some sounds.
  4. Moving to the Subtractor, bring the polyphony down to “1,” and change the Pitch Bend Range to “0.” More importantly, change the Mod Envelope settings to the following: A=0, D=0, S=127, R=0.
  5. On the Matrix, change the number of steps to “1,” and raise the gate to 127 on the first step.
  6. Turning to the back of the rack, there’s really very little to cable. First, cable a CV connection between the “Mod Env”  in the Modulation Ouptut section of the Subtractor to the Level input on the NN19. Also, raise the pot next to this input to 127. Second, cable a CV connection from the LFO1 on the Subtractor to the Gate input on the NN19. Third, cable a CV connection from the Gate CV on the Matrix to the Subtractor’s Sequencer Control Gate input.
  7. The basic cabling for our Grain Sampler
    The basic cabling for our Grain Sampler
  8. Now comes the fun part: Programming the Combinator. Flip the rack around to the front and show the Combi’s programmer. Here are the settings that we have to make:

For the NN19 (Grain Sampler):

Rotary 1 > Sample Start: 0 / 127

Rotary 3 > Amp Env Attack: 0 / 75

Rotary 4 > Amp Env Release: 0 / 90

Button 2 > Filter Res: 0 / 90

Button 2 > Filter Freq: 127 / 90

Button 2 > Filter Mode: 3 / 1

Button 3 > Osc Kbd Track: 0 / 1

Button 4 > Stereo Spread: 0 / 127

Pitch.B > Osc Env Amount: -63 / 63

Mod.W > LFO Amount: 0 / 127

For the Subtractor (LFO):

Rotary 2 > LFO1 Rate: 40 / 127

Button 1 > LFO1 Wave: 0 / 2

The modulation for the NN19 Sampler (Left) and the Subtractor (Right)
The modulation for the NN19 Sampler (Left) and the Subtractor (Right)

Here is an example of the various things you can do with a basic grain sample:
[ti_audio media=”277″ repeat=”1″]

Explanation of the Functionality

Now for some explanation. The NN19 acts as the grain sampler and the heart of everything. This is why it’s so heavily programmed. The amplitude is controlled by the Subtractor because we set up the Mod Envelope’s Sustain to 127, and cabled the cv from the mod envelope to the level input. And the mod envelope of the subtractor remains “on” because we are sending a gate signal from the matrix. This is simple and effective, and makes our grain sampler very “light weight” by only containing 3 devices.

But don’t let this simple setup fool you. The way we programmed everything gives you a very wide degree of control over the sound — and that sound can be any sample you choose to load into the NN19. Let’s take a peek at what’s going on at the front of the Combinator.

Pitch Wheel: This is set to control the oscillator envelope amount from the NN19.  This is probably one of the coolest and freakiest uses of the Pitch Wheel you could have, and is great for mangling sounds into weird and wonderful effects. 

Mod Wheel: This is set to control the LFO amount on the NN19, for more strangeness, giving the sound a warped and warbled effect.

Rotary 1: Controls the Grain Index, much like the Malstrom’s “Index” function operates. What this is doing is controlling the start position of the sample on the NN19

Rotary 2: This controls the rate of the LFO from the Subtractor, or the speed of the grain playback. All the way left and you get a very slow speed, but turn up the knob and it can get extremely fast.

Rotary 3: Controls the Amp Envelope Attack of the NN19. All the way left gives you fast attack, and all the way right gives you a slow attack.

Rotary 4: Controls the Amp Envelope Release of the NN19. All the way left gives you a short release, and all the way right gives you a long release.

As for the buttons, they are all set up to provide some further sound morphing capabilities.

Button 1:  Switches the LFO Type on the Subtractor. You can program this button to switch between any 2 of the 6 LFOs available on the Subtractor, depending which ones you like best.

Button 2: Controls the Filter mode of the NN19. When off, it uses the default LP12 settings, with a fully open frequency and no resonance. Turn it on, and it turns into a HP filter with the frequency somewhat open, and the resonance dialed up high.

Button 3: This is a very important button in my estimation. It controls the Keyboard Tracking of the Grain Sampler’s Oscillator. This is going to largely depend on how you want the notes in your sequencer to be played by the Grain Sampler. If you look at the project files included here, you’ll see I placed a bunch of random 1/32 notes in a clip on the sequencer. The notes are all different pitches between C2 and C4. If you leave the Key Track button off, the pitch of the notes do not affect the sound. The sound remains constant. If you turn the Key Track button on, then the pitch of the sequencer notes affect the Grain Sampler’s oscillator, and have an affect on the pitch heard. To me, this gives you a great deal of control over how you play your sequencer clips. All with a simple switch.

Button 4: This controls the Stereo Spread of the Sample playback. With this button turned off, there is no spread. With it turned on, full spread is applied across the entire stereo field. Also, since “jump” was selected on the NN19’s Spread mode, it will jump back in a random fashion between the left and right fields.

Exploring Alternate Grain Sampler Ideas

Now that we have the basic grain sampler idea laid out, there’s a few variation Combinators that are included in the project file which you can explore in greater detail. I’ll lay out some of the highlights here.

Mal Grain Sampler: This Combinator inserts a Malstrom and uses it’s “A Curve” in place of the Subtractor’s LFO. It’s then tied to the Rotary 3 on the Combi, so you can use any one of the 31 Curves to affect the gate of the Grain Sampler. The “B Curve” is also plotted to the Oscillator Pitch on the Grain Sampler, and is also plotted to the Rotary 3 on the Combinator. Button 1 on the Combinator turns the B Curve on or off. This means that when you press button 1, it creates all kinds of weird sound morphing (or pitch morphing) to the sample, based on the position of the Rotary 3 knob.

Thor Grain Sampler: This Combinator uses the Thor’s LFO in place of the Subtractor. This isn’t that big of a deal or much of a change. But what’s nice about the Thor is that you can map the Thor’s Sequencer Curve 1 to affect the Oscillator Pitch of the Grain Sampler. Turning on Button 1 on the Combinator starts Thor’s sequencer to Run and provides some Pitch shifting to the sample. The added benefit of using the Thor is that you’re not limited to using the Global parameters. Since the Thor Gate is always on, you should be able to utilize any of the Thor parameters to affect your sample sound. You just need to program them in the Modulation Bus Routing System (MBRS).

Triple Thor Grain Sampler: This Combinator layers 3 Grain Samplers together, all playing different samples. The curves on the 3 Thor’s are all different, and the Mode of the step sequencers in them are set to play randomly. This creates a lot of pitch variation when you press button 1 on the Combinator. Instead of Rotary 3 and 4 affecting the Attack and Decay of the Grain Samplers, I set them to control the level of Sample B and C respectively through a line mixer at the top of the Combi stack. This way, the sample you add into the “Sample A” NN19 is always playing at full level, while Sample B and C’s levels can be adjusted (I didn’t want to give up the functionality on either of the first two rotaries, so that’s why Sample A is always at full level. However, you can create a sequencer track for the Line mixer and adjust the level via automation in the sequencer if you like). Try adjusting the programmer settings on the first two rotaries if you want to have the various samplers playing at differing speeds and at different index points. This can create some pretty elaborate sound designs.

As a final tip, you can try automating the Rotaries for any of the Combinators to randomize things. I would also suggest you read a great article by Lewis72 on the art of Granular Synthesis on his blog. He also created a very nice grain sampler which you can download for free. If you find any other ideas out there on the web on the art of Grain Sampling within Reason and Record, please feel free to post them here in a comment. And if you find these useful or create something interesting with them, please let me know. I’d love to hear how you can use these in your own work. All my best!

Distorted Guitar

A distorted guitar I created with the use of a Scream and a Thor Synth. There are also a few Stereo enhancements that were added. I needed this type of sound for one of the songs I was working on.

Play Example or Download the File: distorted-guitar.zip
[ti_audio media=”251″ repeat=”1″]

Description: This is a distorted guitar I created with the use of a Scream and a Thor Synth. There are also a few Stereo enhancements that were added. I needed this type of sound for one of the songs I was working on, and it fit perfectly in my mix. Maybe you can find a use for it as well.

distorted-guitar

Features: For the Thor, the Pitch Bend is set to +/- 7 semitones. Mod Wheel controls the Comb Filter (Filter 1) Frequency. The  Thor Rotaries and Buttons aren’t mapped to anything, so you can play with those if you like. The nice part of this Combi is the fact that it uses a Scream to control distortion. On the Combi, you can control the following:

Rotary 1: Controls the amount of Distortion of the Scream (along with Parameter 2). The higher you go, the more distortion.

Rotary 2: Controls the Thor’s Comb Filter (Filter 1) Frequency. Lower = more cutoff, Higher = less cutoff.

Rotary 3: Controls the Thor’s Low Pass Ladder Filter (Filter 2) Frequency. Lower = more cutoff, Higher = less cutoff.

Rotary 4: Controls the Thor’s Amp attack and Release. Lower = faster attack/less release. Higher = slower attack/more release.

Button 1: Adds Tape Warmth from the first Scream (Bypasses the Scream or enables it)

Button 2: Turns on the first Stereo Enhancement (Widens up the Hi band greatly and Lo band a little bit). The button enables or bypasses this Stereo Imager.

Button 3: Turns on the second Stereo Enhancement (Widens both the Lo and Hi bands quite a bit). The button enables or bypasses this Stereo Imager.

Button 4: Turns the Guitar Modulation on or off. This is some modulation that was set up on the back of the second scream unit and since it’s controlled by a Matrix, you need to have the song in play/record mode to hear it. Otherwise, you won’t hear anything. So, for example, if you are simply playing the combi without setting the song in motion with the play button, the matrix won’t be triggered and you won’t hear the modulation. This basically adds a certain amount of randomness to the sound, which worked out well for one of my own songs. Otherwise, you can turn it off by pressing this button (keeping the button on).

Usage: Used as a Lead Guitar.

Other Notes: Use the pitch bend wheel to create some pretty realistic string bending (at least to my ears).

3 – Filtering Audio through Thor

In this project I’m going to demonstrate a few ways you can use Thor’s filters, FX (Delay and Chorus), and LFOs creatively by routing any of your audio sources through Thor. This can be a great way to punch up some drums or create new innovative sounds from any of the synths. So let’s start our exploration.

In this project I’m going to demonstrate a few ways you can use Thor’s filters, FX (Delay and Chorus), and LFOs creatively by routing any of your audio sources through Thor. This can be a great way to punch up some drums from a Redrum, or to create some new innovative sounds from any of the synths. Furthermore, you’re not limited to using only 1 filter. You can connect your audio through a series of Thor devices to gain access to more than 1 filter at a time. So let’s start our exploration.

Basic Audio Filtering through Thor:

  1. Open Reason. In the rack create a Combinator and inside the Combinator create a Thor, initialize the patch, and then create a Redrum underneath. Add a drum kit and create a simple pattern with a kick, high hat and a few other drums. Don’t make it too complex. Use about 4 or 5 drum samples to create the pattern.
  2. With all the hard work done, now we’ll do some routing. Flip the rack around and route the Left and Right audio output from the Redrum into the “Audio In 1” and “Audio in 2” on the Thor.
  3. Basic cable routing to pipe audio through Thor
    Basic cable routing to pipe audio through Thor
  4. Flip the rack back around, show the Programmer for Thor, and uncheck all the little green lights in the “note” section (the section that is dark and not light brown). Also, turn the analog osc.1 off, and bypass the Ladder Filter (Filter 1). Then turn off the routing between Osc.1 and Filter 1 (the little red “1” light). In the top device section, set Polyphony and Release Poliphony to “0” and turn off both trigger lights (Midi and Step Seq). The point is that you don’t need any of that mumbo jumbo.
  5. Add a Filter into the third Filter slot of Thor. A Low Pass Ladder or Comb filter works well with Drums, but you can use any filter you like.
  6. At this point, most people will press play and think that they should be hearing something. But we’re not finished yet. We need to reroute the default Thor audio signal. Here’s how to do that: In the MBRS (short for “Modulation Bus Routing Section”) of Thor, in the first row on the left, click on the “Source” and select the bottom-most option “Audio Input > 1” then set the “Amount” column to “100.” Click the “Destination” column and select “Filter 3 > Left In.” On a new row, do the same thing, but for Audio Input 2 as a source and “Filter 3 > Right In” as the destination.
  7. The MBRS at the bottom of Thor
    The MBRS at the bottom of Thor
  8. Now press play. You’ll hear the drum pattern, which is routed through Filter 3 in Thor, then to the Chorus and Delay section, and back out to the mixer.
  9. Optionally, you can use the FX (Delay and Chorus), or route the LFO2 to affect any of the parameters in Filter 3 or the FX. One thing I like to do is turn on both the Delay and Chorus. Then in the MBRS section, program the two FX Dry/Wet parameters to the two Rotaries. If you use amounts of +100 for both, then turn the actual Dry/Wet knobs on the FX all the way down, you create a controllable Delay and Chorus effect via the Rotaries. I also use the Mod wheel to control the Filter 3 Frequency or Resonance or both. That way, it’s all controllable. If you want to push it further, you can assign the LFO2 to affect the Frequency or Resonance via one of the Thor buttons. This all gives you a great degree of control over affecting the sound. Download the example file (at the bottom of this post) to see these routings.
The front of Thor, with all routings for the FX and LFO2
The front of Thor, with all routings for the FX and LFO2

First, here’s an example of the original sound:
[ti_audio media=”177″ repeat=”1″]

Second, here’s an example with the audio filtered through Thor (remember, you can adjust the filter to taste):
[ti_audio media=”175″ repeat=”1″]

As an aside, if you’re using Record and have an audio track, you can still route your audio through Thor, by cabling the direct output of the audio track to the Thor inputs 1 + 2 as shown below.

Routing an audio track in Record through Thor
Routing an audio track in Record through Thor

Audio Filtering through a Series of Thor Filters:

By now, you will have noticed that plugging audio through Thor gives you access to the global section (the parts of Thor that are light brown). What if you want the use of more than one filter. Let’s say you want your audio path to move this way: Audio Device > Formant > Comb > Low Pass Ladder? Well, it’s really quite simple. Follow the above directions to set up your first Thor, and then build upon that as follows:

  1. Flip the Rack around. Right-click over Thor and select “Duplicate Devices and Tracks.” Do this one more time. You should now have 3 Thor devices.
  2. Move the “Audio In” cables from the first Thor to the bottom-most Thor’s “Audio Ins” and then cable the “Audio Outs” from that bottom-most Thor into the Thor above’s “Audio Ins.” Finally, cable the “Audio Outs” from the middle Thor to the “Audio Ins” of the top-most Thor.
  3. Flip the rack around again to see the front. Then switch the bottom-most Filter 3 to “Formant” and top-most Filter 3 to “Low Pass Ladder.”
  4. Press Play and adjust the three filters to taste. It might help to bypass the filters on the top two Thors. Adjust the bottom filter, then turn the middle filter on, adjust it, and then finally turn the top Thor filter on and adjust it. That’s all there is to it. 3 filters affecting one sound source.
Routing Thor filters in series to affect a sound source
Routing Thor filters in series to affect a sound source

Example of the Filters in Series:
[ti_audio media=”178″ repeat=”1″]

Audio Filtering separate Drums through Thor:

All of the above is fine and dandy, but what if you don’t want all the Drums filtered the same way. Let’s say, for example, you want the Bass Drum to be filtered by a Low Pass Ladder filter and the High Hat to be filtered through a High Pass in a State Variable filter. Well, without getting too complicated, here’s what you do:

  1. Follow the steps to create a Basic Thor Filter above.
  2. Create a Line Mixer 6:2 and move it to the top of the Devices in the Combinator.
  3. Flip the Rack around, and delete the audio output cables from the Redrum.
  4. Duplicate the Thor device (so you now have two Thor devices under the Line Mixer.
  5. Move the Audio Outputs from the first Thor into the Master Audio Outputs of the Line Mixer.
  6. Cable the Bass Drum Audio Outputs from the Redrum to the first Thor’s Audio Inputs 1 + 2
  7. Cable the High Hat Drum Audio Outputs from the Redrum to the second Thor’s Audio Inputs 1 + 2
  8. Cable the Audio Outputs from the two Thors into Channels 1 & 2 on the Line Mixer.
  9. Routing two separate filters to control the Bass and High Hat Drums
    Routing two separate filters to control the Bass and High Hat Drums
  10. Cable the other Drums into the free channels on the Line Mixer.
  11. Routing all the drums to the Line Mixer
    Routing all the drums to the Line Mixer
  12. Flip the Rack around again to the front, and then insert the Filters of your choice into the Filter 3 slots of both Thors. Adjust them to taste in order to affect the Bass and High Hat Drums

Example of separately filtered Drums (with a little delay on the High Hat):
[ti_audio media=”176″ repeat=”1″]

Some Final Thoughts:

Finally, just because you filter one sound through the Global section of Thor, this doesn’t mean you can’t use the Thor to generate a sound of its own. This way, you end up merging two sounds together in a kind of layering. If you want to see how this is done, look at the “Synth+Filter – Droid Chatter” Combinator in the example files. You can do some pretty interesting things this way. Additionally, you can take one sound source, split it into two different Thor filters and then route them to two separate channels in the mixer, or back into one channel if you like. A wealth of options and possibilities, for sure. 

Example of a Synth Arp + Thor with an Analog Oscillator, both generating sound. The Synth Arp is being filtered through Thor while Thor is generating a sound of it’s own. This creates a layered effect:
[ti_audio media=”179″ repeat=”1″]

So as you can see, routing audio through Thor is not difficult, but most people miss the step about the Modulation Bus Routing Section. If you remember to reroute the audio signal, you’re golden. That’s it in a nutshell. nothing fancy.

I mainly use Thor’s comb or Low Pass Ladder filter to affect drums and then put it all in a combinator. But that’s just one way you can use Thor.  Are there any other ways you Route your audio through Thor? Do you have some creative ideas that I haven’t covered here? Please share them. I’m curious to see how people are using Thor to affect external sources.

Download the Example Files