Thor Tremolo-Pan-Freq FX

This patch came out of a request to have a Tremolo effect in Reason. There’s many ways you can create one. But this time I wanted to expand upon that a little bit and create a triple effect using a single Thor device. So here is a Tremolo / Pan / Frequency Modulation effect patch that you can use.

This patch came out of a request to have a Tremolo effect in Reason. There’s many ways you can create one. But this time I wanted to expand upon that a little bit and create a triple effect using a single Thor device. So here is a Tremolo / Pan / Frequency Modulation effect patch that you can use.

Download the 2 Combinator patches here in zip file format: thor-tremolo-pan-freq-fx. Note: You will need Reason 5 or above to use the Combinators, because they both use the CV inputs on the Combinator, which was a new feature of Reason 5. If you have a previous version of Reason, the Combinator will give you a “bad format” error message.

(FX) Thor Tremolo-Pan-Frequency Combinator

Thor Triple effect patch: Tremolo, Pan, and Frequency Modulations
Thor Triple effect patch: Tremolo, Pan, and Frequency Modulations

This patch uses the Combinator Mod Wheel to trigger the level of the effect(s) in question. The patch is very simple in design, using only a single Thor inside the Combinator. The LFO 2 in Thor is used to modulate the following 3 effects:

  1. Tremolo
  2. Pan Modulation
  3. Frequency Modulation

Note: You must use the Mod Wheel in order to trigger these effects. You won’t hear anything happening to your audio if you don’t use the Mod Wheel!

The other nice thing about this patch is that you can have any combination of these three effects running at the same time. Or you can use only one of the effects at a time. The choice is yours.

The following explains how the patch rotaries and buttons work:

Pitch Bend: This parameter is not used.

Mod Wheel: Controls the level of the effects globally (i.e.: all three at once).

Rotary 1: Volume – Controls the global volume of the audio going out of the Combinator via the Master Level on the Thor device.

Rotary 2: Pan Location – Controls the location of the Audio in the stereo field. If the Pan modulation is turned on (see Button 2), then the panning still floats from left to right and back again like a pendulum, however, the Pan location is static and can be set anywhere along the stereo field. Try using this rotary in tandem with the Pan modulation turned on to get a feel for it.

Rotary 3: Frequency Level – Controls the Frequency of the incoming audio. Fully right cuts off the frequency entirely. Fully left opens the frequency completely. Use this in tandem with the Frequency Modulation enabled (see Button 3) for some interesting effects.

Rotary 4: Rate – This controls the rate of Thor’s LFO 2, which affects the modulation of the three effects globally.

Button 1: Tremolo – Turns on the Tremolo effect, which basically modulates the Amp Gain in Thor based on Thor’s LFO 2.

Button 2: Pan – Turns on the Panning modulation effect, which pans based on Thor’s LFO 2.

Button 3: Frequency – Turns on the Frequency modulation effect, with is modulated based on Thor’s LFO 2.

Button 4: Sine / Saw – Determines whether a Sine waveform is used or a Sawtooth wave is used. Sine is used if the button is off (disabled), and a Sawtooth waveform is used if the button is on (enabled).

And there are some extensions to this patch that I’ve set up on the Thor Rotaries and Buttons which can be accessed by Showing the Combinator devices:

Thor Rotary 1: Resonance – Controls the Resonance of Thor’s Filter 3. Minimum is set to zero (0) and Maximum is set to 96.

Thor Rotary 2: This parameter is not used.

Thor Button 1: LFO 2 Tempo Sync – Turns on the Tempo Sync for Thor’s LFO 2. When turned on, the LFO 2 Rate is tied to the song Tempo. When turned off, it is free-running.

Thor Button 2: LFO 2 Key Sync – Turns on the Key Sync for Thor’s LFO2. When turned on, the LFO 2 is re-triggered each time a key is pressed. When turned off, the LFO 2 wave is not re-triggered.

(FX) Thor Vibrato-Tremolo Combinator

This patch idea came courtesy of Eric Kloeckner. He said you could create a Vibrato in Thor by sending the audio through the Chorus effect and turning down the feedback. And voila, there it was. So now, I’ve created a second patch and placed both in the download file at the top of this posting. I also separated the LFOs in Thor, so that you can adjust the two LFOs independantly; meaning, you can turn on both the Vibrato and Tremolo and have them cycling at different rates and modulate both differently as they both act on your audio. Fun stuff.

Second Thor FX Patch with separate Vibrato and Tremolo effects
Second Thor FX Patch with separate Vibrato and Tremolo effects

The following explains how the patch rotaries and buttons work:

Pitch Bend: This parameter is not used.

Mod Wheel: Controls the level of the effects globally (i.e.: all three at once). Note again, you must use the Mod wheel to use the effect. No Mod Wheel, no effect. Very important to remember!

Rotary 1: Vibrato Delay – Controls the Chorus Delay, which can give some interesting effects and add a little more life to your Vibrato.

Rotary 2: Gain Level – Controls the Gain position of the Audio. In other words, it’s a volume level, but it’s most useful if you use it while the Tremolo is on. This way you can adjust the amount of gain (Tremolo) and the range at which the Mod Wheel affects the Tremolo.

Rotary 3: Vibrato Rate – Controls the rate of the Vibrato by adjusting the Rate of Thor’s LFO 2. In this patch, LFO 2 is tied to the Vibrato, and LFO 1 is tied to the Tremolo.

Rotary 4: Tremolo Rate – This controls the rate of the Tremolo by adjusting the Rate of Thor’s LFO 1. In this patch, LFO 2 is tied to the Vibrato, and LFO 1 is tied to the Tremolo.

Button 1: Vibrato – Turns the Vibrato effect on or off.

Button 2: Tremolo – Turns the Tremolo effect on or off.

Button 3: Vibrato Sine / Saw – Switches LFO 2 between a Sine and Sawtooth waveform, which in turn affects the shape of the Vibrato.

Button 4: Tremolo Sine / Saw – Switches LFO 2 between a Sine and Sawtooth waveform, which in turn affects the shape of the Tremolo.

And there are some extensions to this patch that I’ve set up on the Thor Rotaries and Buttons which can be accessed by Showing the Combinator devices:

Thor Rotary 1: Frequency – Controls the Frequency of Thor’s Filter 3. Minimum is set to zero (0) and Maximum is set to 127.

Thor Rotary 2: Resonance – Controls the Resonance of Thor’s Filter 3. Minimum is set to zero (0) and Maximum is set to 96.

Thor Button 1: Vibrato Tempo Sync – Turns on the Tempo Sync for Thor’s LFO 2. When turned on, the LFO 2 Rate is tied to the song Tempo. When turned off, it is free-running.

Thor Button 2: Vibrato Key Sync – Turns on the Key Sync for Thor’s LFO 2. When turned on, the LFO 2 is re-triggered each time a key is pressed. When turned off, the LFO 2 wave is not re-triggered.

Hope you find this useful. Let me know what you think?

36 – Let’s Talk Compression

Let’s start talking about Compression. In one of my previous tutorials, I showed a way you could use Kong to parallel compress a Kick Drum. So that was one method. But here are a few others that everyone should know about, especially if you’re working on most dance music genres.

Let’s start talking about Compression. In one of my previous tutorials, I showed a way you could use Kong to parallel compress a Kick Drum. So that was one method. But here are a few others that everyone should know about, especially if you’re working on most dance music genres.

Sidechain Compression (aka: “Ducking” or “Gating”)

This is a basic concept that everyone should know. But the twist is that we’ll use Kong, instead of Redrum, to compress a Thor bassline. This way, when the kick drum sounds, the bass is compressed and “ducks out” of the mix. This ensures the Kick drum cuts through the bass in your track.

Compression can also be used for other things as well. It does not have to be confined to a Kick drum and Bassline. You can use any sound source to duck out any other sound source and create a pumping rhythm like this. For instance, you can use a Kick drum to compress your main synth line. This can create some interesting gating effects if used properly.

Parallel Compression

Parallel Compression occurs when you mix a dry sound source together with that same sound source which has been compressed. In this way you get a wider, fatter sound, and you also get the flexibility of controlling the mix between the dry and wet signals. I put together a video to show you how Kong can be used in a Parallel Compression scenario on YouTube. However, why don’t I show you another way you can use a Redrum to parallel process a Kick Drum (a very common usage of this technique), or an entire set of drums (this is a little more unorthodox because you would usually parallel compress one drum at a time, but just to show you that you have options. . . ). Here’s the video:

Frequency-Based Compression

This approach is a little different, but the concept is similar. A lot of times, you might have a specific frequency that you want to “duck” out of the mix. One method you can use is Frequency-based compression, where you compress only a specific frequency in your mix. This is usually used to remove an unwanted sound, and probably the most popular usage for this kind of compression is “de-essing” where those nasty sibilant “S” sounds are removed from vocals. This is really childs play with Reason and the M Class EQ and Compressor devices. Let’s take a look at how it’s done:

As an alternative to using the M Class Eq device, you can use the BV512 Vocoder. In this way, the sound is colored slightly (and moreso if you use the 512 FFT setting), but it’s still a legitimate way that has its own technique. You can see the video of it below. Try it out. You might come to like this method.

Multi-Band Compression

Of course, there’s also something called “Multi-band Compression” which takes the EQ frequency idea to an extreme. This is usually applied to the whole mix at the end of the signal path, before going to the audio outputs. In this way, you set up multiple compressors each affecting a specific range of frequencies. The concept is not entirely difficult, depending on how many compressors you want to set up. For a really great introduction to multi-band compression, I would advise you to check out James Bernard’s week 7 video tutorial on Multi-Band Compression. In addition, James also has a complete multi-band toolkit available as a free download. So go check it out now if you haven’t already!


So that’s it. I’m sure there are other creative ways you can use Compression, but I hope that begins to inspire you to look at compression as a useful dynamic processing tool or even special effect. If you have any comments on this or any other tutorials, please let me know.

16 – Multiband Anything: Freq. FX

Usually we think of Multiband being reserved for Compression, but why not divide any type of effect, sound, or multiple effects and sounds into different bands using the BV512 Vocoder / Equalizer supplied with Reason. Doing so, you can divide effects and sounds into 32 distinct frequency bands, and that, my friend, can open the doors to a whole wealth of possibilities.

Usually we think of Multiband being reserved for Compression, but why not divide any type of effect, sound, or multiple effects and sounds into different bands using the BV512 Vocoder / Equalizer supplied with Reason. Doing so, you can divide effects and sounds into 32 distinct frequency bands, and that, my friend, can open the doors to a whole wealth of possibilities.

You can download the project files here: multiband-anything This is a zip file which contains an .rns file with 6 Effects Combinators to showcase how you can use the BV512 in Equalizer mode to split different effects to different frequencies in order to process your sound. All the Combinators process the same matrix pattern which is sequencing a Thor synth. Each combinator then outputs the sound to a separate channel on the main 14:2 Mixer. To hear the various effects, mute/solo the specific channels on this mixer.

Starting off Small: Understanding the BV512 Digital Vocoder

The BV512 is a Digital Vocoder which can be used as an EQ device as well. When set in EQ mode, you can select 4, 8, 16, 32, and 512 bands of EQ separation. You’ll have to understand that the 512 bands is an FFT (Fast Fourier Transfer) mode, which for all practical purposes will color your sound and will cause a slight delay in the realm of 20 ms. when processing audio through it. There will only be 32 bands displayed, but each of those 32 bands will actually control a higher amount of bands (512 / 32 = 16 bands each). So for this tutorial and for processing purposes I’m going to stay away from the FFT (512) setting, and instead focus on 32 bands or less (a much more manageable number for the following types of effects).

Just because I’m staying away from using the FFT (512) setting doesn’t mean it’s not useful. Try it out in your own patches, because you never know where you’re going to find that signature sound that makes your brain melt. And in certain situations, I really like the color of the FFT (512) setting.

A Basic Multiband Delay

At it’s simplest, here’s a method to split out a different delay to affect different frequency bands. First, the video. Then the instructions below:

First, Create a Combinator. Then inside, while holding down the Shift key, create a 14:2 Mixer, Spider Audio Merger/Splitter, BV512 Vocoder, and DDL-1 Digital Delay device, in that order.

Set the Vocoder’s Band Count to 16 Bands, and switch from Vocoder mode to “Equalizer” mode.

Hit to tab key to flip the rack around  and route the L/R master outs of the Mixer to the L/R “From Devices” of the Combinator. Then route the Combinator’s L/R “To Devices” into the Spider Audio’s main L/R Splitter inputs. Send one pair of L/R split outputs to the Vocoder’s L/R Carrier inputs. Then send the Vocoder’s L/R Carrier outputs to the Delay’s L/R inputs. Finally, send the Delay’s L/R outputs to the Mixer’s L/R channel 1 inputs.

This image shows a single instance of the Vocoder and Delay hooked up to a Channel in the 14:2 Mixer.
This image shows a single instance of the Vocoder and Delay hooked up to a Channel in the 14:2 Mixer.

Hit the tab key again to flip the rack around to the front. Hold the Shift key (if using Reason), or hold the Ctrl key (if using Record), and select both the Vocoder and the Delay devices. Then right-click and select “Duplicate Devices and Tracks.” Do this two more times to create 4 sets of Vocoder/Delay devices.

On the first BV512 (the low range), set bands 5-16 to zero. On the second BV512 (The low-mid range), set bands 1-4 and 9-16 to zero. On the third BV512 (the mid-high range), set bands 1-8 and 13-16 to zero. On the fourth and final BV512 (the high range), set bands 1-12 to zero.

The four BV512 devices with their Frequency bands divided, and 4 associated delay units
The four BV512 devices with their Frequency bands divided, and 4 associated delay units

Set the first Delay unit at the top (the low range) to 1 step, set the second one (low-mid range) to 3 steps, the third one (mid-high range) to 5 steps, and the fourth one (the high range) to 7 steps. This way, each frequency will produce a different delay.

Again, press tab to flip to the back of the rack. Send the other 3 L/R splits from the Audio Splitter into each of the other 3 Vocoder’s L/R carrier Inputs. Then send each of the Delay’s L/R audio outputs to their own Channels on the mixer, so that Channels 1-4 are taken by the Delay Devices outputs.

Now all that’s left is to save the Combinator, and load up your favorite sound to pipe into this effect. To do so, open any instrument and route it’s L/R audio output into the Delay Combinator’s L/R “Combi Input.” Play the sound on your controller keyboard or set up a matrix pattern to sequence the instrument and you’ll hear a different delay for each of the four sets of bands. In other words, the frequency of the sounds you put into the combinator will determine which delay affects the sound. Different frequencies will get different delays applied. Then the sum of all these delayed sounds are mixed into the Mixer, and sent back out the Combinator.

If you give this some thought, you’ll realize that you can apply any number of effects chains to any of the 32-frequency bands of the BV512 to split up effects according to frequency. Furthermore, you can apply this multi-band technique not only to audio and effects, but also to Filters, LFOs and Envelopes which affect the audio. Let’s take a deeper look into how this is done by creating a multiband filter.

MultiBand Filtering: The next step

Now to get a little more complex. Let’s try Filtering our audio based on the Frequency of the incoming signal, and then providing a way to adjust the filter applied to each set of bands. Using our above technique, this becomes child’s play.

Building on the last Delay device we created, select all the DDL-1 Delay units and delete them all.

Then under the first Vocoder, hold Shift down and create a Thor device. Bring all the levels of Thor down to zero (what I call truly initializing Thor). Bring the range on the pitch wheel down to zero, bring polyphony down to zero, bypass all the oscillators and filters, bring all the levels down to zero, and turn all the green buttons off. Leave only the Global envelope Gate Trigger button on, and leave the Global Evelope ADSR envelope in its default position. This way, the envelope can affect Filter 3, which we’ll turn on a little later.

Thor fully initialized, except for the Global Envelope Gate Trig and Tempo Synch Buttons
Thor fully initialized, except for the Global Envelope Gate Trig and Tempo Synch Buttons

Now that Thor is much more initialized, go into the MBRS (Modulation Bus Routing Section) and set up the following modulations:

Audio In1: 100 > Filt3 L.In

Audio In2: 100 > Filt3 R.In

Routings in Thor's Modulation Bus Routing Section (MBRS)
Routings in Thor's Modulation Bus Routing Section (MBRS)

Next, duplicate the Thor device 3 times, and place each new Thor under each of the other Vocoders.

Flip the rack around and Move the L/R Carrier output on each Vocoder to the L /R Audio outputs of each corresponding Thor device (1 Mono/Left and 2 Right output on each Thor). Then route new cables from the L/R Carrier output on each Vocoder to the L/R Audio inputs of each corresponding Thor device (Audio In 1 and Audio In 2, respectively on each Thor).

The Back of the Rack showing the Routings for the topmost BV512 device and Thor device
The Back of the Rack showing the Routings for the topmost BV512 device and Thor device

Flip the rack around to the front again, and open up the Combinator’s Programmer. It’s time to add in our Filters and make them adjustable for each set of BV512 bands. For each Thor device, add the following modulations:

Button 1 > Filter 3 Type: 0 / 2

Button 2 > Filter 3 Comb Preset: 0 / 1

Mod Wheel > Filter 3 Res: 0 / 100

Now for each Thor, assign the Filter 3 Frequency to it’s corresponding Rotary as follows:

Thor 1: Rotary 1 > Filter 3 Freq: 1 / 127

Thor 2: Rotary 2 > Filter 3 Freq: 1 / 127

Thor 3: Rotary 3 > Filter 3 Freq: 1 / 127

Thor 4: Rotary 4 > Filter 3 Freq: 1 / 127

The Combinator's Mod Matrix settings for the first Thor
The Combinator's Mod Matrix settings for the first Thor

Now when you plug an instrument into this Combinator, you can selectively adjust the filtering of the various frequencies of the sound using the 4 Rotaries of the Combinator. Rotary 1 will affect the low range, Rotary 2 and 3 will affect the mid range, and Rotary 4 will affect the high end.

Where do you go from here

Included in the project files are a set of 6 effects unit that utilize the Equalizer mode of the BV512 to divide the audio source into separate bands and apply effects to each of those bands. Here’s a brief explanation of each:

4 x 16-Band Delay FX: This Combinator uses the Vocoder in 16-band mode to create 4 splits of the audio source going through 4 different delay units. This combinator is the same one created at the beginning of this tutorial, except that there’s an additional delay created under each Vocoder in order to split the delays left and right (for a wider stereo separation). Each rotary controls the delay time for each left/right delay pair. And the buttons underneath each rotary will change the rotary between Steps / MS delay count. A very important feature of this Combinator is the Mod Wheel, which is used as a global Dry/Wet knob for the delay. In its default low-end position, there is no delay. Push the Mod Wheel all the way up and you’ll push the delay fully wet.

8 x 32-Band Delay FX: This combinator is exactly the same as the above 4-way delay, however this uses the Vocoder’s 32-band setting, and splits the signal into 8 different delay units (affecting 4 bands each). Since there’s only 4 rotaries and buttons, you can’t control each delay individually as you can with the previous Combinator. So I opted to put the global dry/wet delay knob on Rotary 1, and put a global steps/ms switcher on Button 1. The only real effect button 1 has is if you want to quickly edit all the delays and have them in MS mode instead, you simply press the button, then go into each delay to edit the delay time.

2-Band Phased Delay FX: This Combinator really was more of an experiment than anything else. The one interesting feature here is that the Vocoder Bands are curved so they blend into each other, rather than have an abrupt frequency change. You can see this on the Vocoder Band area.

Mixed-Band Reverb FX: This combinator uses the Vocoder bands as a notch and Bandpass frequency filter to send your audio through two very different Reverb effects. This goes to show you that there are a lot of possibilities when you start bending different frequencies on the BV512. Use the first Rotary to adjust the Dry/Wet Reverb signal affecting the low and high range of frequencies. Use Rotary 2 to adjust the Dry/Wet Reverb signal affecting the middle range of frequencies. I put a tight small room reverb on the  low & high frequencies and a long hall reverb on the middle range of frequencies to show how drastically you can affect the ambience of your sound by toying with the different frequency ranges.

SuperSpreader FX: This is one way you can get some severe (and almost irritating) amount of stereo separation from a single sound source. I had to add a bunch of ECF-42 envelope filters in order to tame the sound somewhat. You can program this up if it’s to your taste. One thing that I wanted to point out here is that you can use Rotary 1 to invert the Frequencies, thereby flipping them around in real-time or in automation if you want to program the knob in the sequencer. Check out the Modulation Routing inside the Combinator to see how this is done. One drawback is that you can only affect 10 bands at once for any given vocoder, which limits you to using a set amount of band counts. But I’m sure there’s a way to push this limit using CV. Any takers want to give this a shot?

MultiBand Filter FX: Finally, you have the multiband filter FX Combinator which was featured in this tutorial, so I won’t go into too much detail here. Just note that I added a Delay and Chorus on Buttons 3 and 4 if you want to give those a try.

I can almost see the next question on your mind. If we can do all this with the BV512 in Equalizer mode, then what’s to prevent us from applying these same techniques using the MClass Equalizer? The truth is nothing! In fact, you can tailor the MClass Equalizer to a much finer degree than the Vocoder. However, the Vocoder can be a great way to test out quick ideas in a visually intuitive way. And as I hope I’ve shown here, you can still find this device highly flexible and usable. But that being said, there’s nothing stopping you from separating your signals using the MClass EQ, and even combining this with the MClass Stereo Imager to create some very unique Effects Combinators. If you have any ideas or come up with some brilliant effect unit out of this tutorial, please share, comment, and let us know about it.