BV512 Spectrum Analyzer

This is what fills my heart with warm fuzzies. When those that are part of the Reason and Record community come together to Analyze and tackle some of the more difficult aspects of the software and fill in the gaps that may be left by incomplete specifications. Wendy Dunham and Giles Reaves have teamed up to provide the penultimate BV512 Vocoder Spectrum Analyzer for Reason and Record.

This is what fills my heart with warm fuzzies. When those that are part of the Reason and Record community come together to Analyze and tackle some of the more difficult aspects of the software and fill in the gaps that may be left by incomplete specifications. Ed did it previously with his Thor Sine Wave Shaper tutorial, using it to cross-fade between 4 different devices. And now Allen Day (“rogerraa”), Wendy of Wendy Dunham Music fame and Giles Reaves (Selig) from the Selig B3-Leslie refill fame have teamed up to provide the penultimate BV512  Spectrum Analyzer. Selig provided the charts, and Wendy provided the Combinator with a backdrop that cleverly shows the frequency bands.

Download the charts along with the Combinators here:  spectrum-analyzer-project-files. This zip file contains the two charts outlined below, and Wendy’s 2 Combinators: 1. A 16-band Spectrum Analyzer and 2. A 32-band Spectrum Analyzer. They both use the BV512 Vocoder/Equilizer in Reason. You can, however, use this in Reason or Reason+Record.

So how do you use this? Well, let’s let Wendy explain:

Note: This excerpt is taken from her site. There is also a video you can watch about how it works here: http://www.galxygirl.com/videos/music-making/spectrum-combinators.html. She has graciously allowed me to present it here on my blog (thanks Wendy, you are indeed amazing for sharing this with us 🙂 )


BV512 Spectrum Analyzer with Frequency Band labeled Backdrop
BV512 Spectrum Analyzer with Frequency Band labeled Backdrop

These are convenient Spectrum Analyzer Combinators to see your song’s frequency spectra. Each one has an accurate Scale with Band and Hz labels. I prefer the Spectrum Analyzer 32 band version, but in case you don’t want that much resolution, I also created a Spectrum Analyzer 16 band version.

  • Band Select: 4, 8, 16, 32, FFT (512)
  • Decay: Lower = faster display; higher = overall averaging.
  • Display Scale: Roll this back to see the peaks.
  • Display Hold: Take a snapshot in time.

Place before final output. It’s a great aid for balancing your mix!

You can leave this on without adversely affecting your output. The main signal passes straight through the combinator via an Audio Spider, so it’s monitoring the frequency safely.
Vocoder Band Frequencies
Vocoder Band Frequencies

These reference charts for all band frequencies are printed on each combinator. The frequencies were measured accurately by Giles Reaves (“selig”) and Allen Day (“rogerraa”) on the Propellerhead User Forum.

Here’s another tip:

If you have an MClass EQ somewhere in your song, temporarily sweep one filter back & forth (with max Q, max Gain), and you should be able to see that peak on the analyzer and identify the frequency.

For those interested, Selig did a great job putting together the frequency charts for the 16- and 512 (FFT) -band modes of the Vocoder. Here are the screenshots:

BV512 Vocoder - 16-Band mode Frequency Chart
BV512 Vocoder – 16-Band mode Frequency Chart
BV512 Vocoder - 32-Band mode Frequency Chart
BV512 Vocoder – 512 (FFT) Band mode Frequency Chart

There you have it. Thanks so much to Wendy, Giles, and Allen for these great resources. Your important work does not go unnoticed.

18 – A 12-Way Filter FX Combi

This is a 12-Way Filter FX Combinator patch (with Shaper – and an Envelope for the ECF-42) which is best used as an Insert Effect anywhere you need it to filter audio. It’s a tightly compact little bugger.

This is a 12-Way Filter FX Combinator patch (with Shaper – and an Envelope for the ECF-42) which is best used as an Insert Effect anywhere you need it to filter audio. It’s a  tightly compact little bugger. It took me quite a bit of time to work out the proper programming in the Combinator’s Mod Matrix, because some of the Rotaries and Buttons, as well as the Mod Wheel, have dual functionality, depending which filter you are using. This is why I’m going to provide a little explanation from the vantage point of looking at each device that the combinator is controlling and explaining how those devices are controlled. I think that’s the best approach to show how this Combinator functions.

If you’re itching to get your hands on the Combinator, then go here: 12-way-filter-fx. It’s a zip file that contains the FX Combinator I’m outlining below. For safety sake, please read through so that you understand how this thing operates. Don’t want to open up any black holes in the universe or anything.

A 12-way Filtering FX Combinator system. Deceptively simple looking.
A 12-way Filtering FX Combinator system. Deceptively simple looking.

First, A brief background. When I posted a video on YouTube showing how to create a selectable Thor Filter, the focus was on creating a way to route audio through Thor and use Thor’s global Filter 3 slot and be able to switch between all 4 Thor Filters on the fly. This way you could control most of Thor’s parameters from within a single Combinator. That’s great for getting the most out of Thor’s 4 filters. But then Hydlide gave the following comment on his site, The Sound of Reason:

it’s an awesome technique. I sometimes use thor just being an audio processor only because it is the only device that can change filters (all of them) on the fly. In Reason 3 the malstrom was always my default audio input/output source since it didn’t need that much programming and such (just jack the audio signals inside the rear and you are done). However the nice thing with thor is that whole programming part. I can remember I also did a similar setup using filter slot 1. However, that one even becomes more tricky since filter 3 is a global filter (eg: does not need a gate to trigger), with filter 1 you need that same setup with the step sequencer for a gate to retrigger. But it does add that shaper thingy in between. However, in addition, it does add something having the step sequencer running anyways, and use the curve of the step sequencer to retrigger something else (eg: Shaper drive, filter changes etc…).

So two things I got from this comment:

  1. Thor is the only device that can change filters on the fly. [OK, let’s add more filters that we can change on the fly]
  2. That shaper thingy in between. [hmmm. yes indeed. Let’s add that shaper thingy]

So there was my mission. To create a Combinator that could change more than just the Thor filters on the fly, but could also allow you to select a few other filters (namely the ECF-42 and the Malstrom A/B Filters). And also let’s utilize the “Shaper Thingy” in between (since both Thor and the Malstrom have “Shaper Thingies” let’s definitely have the ability to change both and adjust the amount of both).

Oh and hey, while we’re at it, let’s try our hand at squeezing in the ability to utilize the Envelope of one of the filters. And the ability to change filter modes on one of the other filters. Essentially, we’re going for ultimate controllability and in the end you’ll have a 12-way Adjustable filter using a single Combinator. Think you can’t do all of this in a single Combinator. Wrong!

It’s actually deceptively simple to route into a Combinator. And it’s really light-weight on your CPU. The really tricky part in putting this all together is programming the Modulation section of the Combinator. Here’s how it breaks down:

There are three main devices that can be used as filters: Thor (4 filters), ECF-42 (1 Filter with 3 Modes), and the Malstrom (2 Filters: A&B which work globally, and these with 5 variable modes). So 4 Thor Filters + 3 ECF Filter Modes + 5 Malstrom Filter Modes = 12-way adjustable Filter FX. Here are the parameter settings for each of the 3 different devices:

Thor Filter

Rotary 1: Cycles through all of Thor’s 4 filters: Low Pass Ladder, State Variable (on High Pass mode), Comb Filter (+ mode), and Formant Filter.

Rotary 2: Adjusts the full range of the Filter Frequency

Rotary 3: Adjusts the full range of the Filter Resonance

Rotary 4: Adjusts Thor’s Shaper thingy Amount (termed the drive in Thor).

Button 1: When pressed, the Thor filter becomes active. When not lit, Audio routed to Thor is muted.

Button 4: When pressed, Thor’s Shaper Thingy is enabled.

Mod Wheel: Acts as a Shaper selection for the different Thor Shaper waves. When recording using this combinator, I would highly suggest just setting this and forgetting it — in other words, program the automation for the mod wheel in the Reason/Record sequencer, but don’t automate any changes with the Mod wheel. When you adjust the shaper modes using the mod wheel in this way, you’ll hear an audible click which is nasty and you won’t want it saved along with your recording. So set up a shaper wave and then forget about it.

ECF-42 (Envelope Controlled Filter)

Rotary 1: Cycles through the 3 ECF Filter modes: BP-12, LP-12, and LP-24

Rotary 2: Adjusts the full range of the Filter Frequency

Rotary 3: Adjusts the full range of the Filter Resonance

Rotary 4: Adjusts the Filter Envelope Amount

Button 2: When pressed, the ECF-42 filter becomes active. When not lit, Audio routed to the ECF-42 is muted.

Button 4: Activates the Envelope when lit. The Envelope is off by default. Actually, what’s happening is the Matrix inside the Combinator is used as a gate CV to control the Filter frequency of the envelope. Since it is routed through the CV in/out of one of the Thor devices, this button acts as a trim knob control for the free-running Gate CV from the Matrix into the ECF CV Gate in. This makes things instantaneous when switching the Envelope button on / off.

Mod Wheel: Acts as the Velocity setting for the Envelope amount in the ECF Filter. Of course, it won’t do anything unless you have the Envelope enabled (button 4).

Malstrom’s separate A/B Filter processor

Rotary 1: Cycles through the Malstrom’s A/B Filter modes:LP-12, BP-12, Comb+, Comb-, AM

Rotary 2: Adjusts the full range of the Filter Frequency

Rotary 3: Adjusts the full range of the Filter Resonance

Rotary 4: Rotary 4: Adjusts the Malstrom’s Shaper thingy Amount.

Button 3: When pressed, the Malstrom filter becomes active. When not lit, Audio routed to the Malstrom is muted.

Button 4: When pressed, Malstrom’s Shaper Thingy is enabled.

Mod Wheel: Acts as a Shaper selection for the different Malstrom Shaper waves. When recording using this combinator, I would highly suggest just setting this and forgetting it — in other words, program the automation for the mod wheel in the Reason/Record sequencer, but don’t automate any changes with the Mod wheel. When you adjust the shaper modes using the mod wheel in this way, you’ll hear an audible click which is nasty and you won’t want it saved along with your recording. So set up a shaper wave and then forget about it.

A few other notes:

  • There is no “bypass” option for the filters. In other words, if you turn off buttons 1, 2, and 3, then you won’t hear any audio coming out of the combinator (even though audio is going INTO the combinator). So, to get around this, bypass the Combinator. This way, you will still hear audio going through the Combinator.
  • If you press play or record while the Thor filter is enabled (Button 1 is lit), Thor will not sound. You need to actually engage this button after playing or recording is initiated. Not sure if there is a workaround for this, but let me know if there is and I can update the patch.
  • Since each Filter has its own dedicated Line Mixer associated with it, and the first three buttons simply turn the master level on or off (0 at a minimum and 100 at maximum for the respective buttons), then having more than one filter on simultaneously will effectively duplicate the audio and combine the filtered audio together. This wasn’t really intended when I put this Combinator together. Usually, I would think you would want one of the filters on at any given time, and not have them both on in unison. But I’m not stopping you from using it in this way. You might get some interesting effects by enabling both the Thor and the Malstrom Filter, and then using the Shaper for both at the same time.
  • Further to the point above, if you want to stack filters on top of each other in your audio chain, it’s pretty easy to do. Just put as many copies of this combinator on top of each other and you have an instant stack of adjustable filters in series as an insert effect.
  • The Pitch/Bend wheel is open if you want to program it to do something above and beyond what the Combinator already does. Not sure what else you could possibly pack in here, but hey, go for it!

So I hope you enjoy this little venture into packing everything but the kitchen sink into a Combinator. Please let me know if you find this useful and if you have any great solutions or better ways to improve on this patch please let me know. Also, if you have a question or want to see me write about something in Reason or Record, please speak up. I take requests too. Until next time, good luck in all your Musical pursuits!

Selectable Thor Filter

In this set of video tutorials, I’m putting together a Selectable Thor Filter (with Envelope). Select between the 4 Thor filters, adjust Frequency and Resonance, as well as apply the Thor Step Sequencer to gate the Global envelope, which in turn adjusts the Frequency, Resonance, or Chorus Modulation Amount. Also switch between any combination of all three envelope destinations. Fun stuff!

I’ve been working a lot lately with effects, and thinking about producing a refill in the near future. I’m not sure of all the details yet, but in its creation, I’m fashioning a series of FX and this is one of them: A Selectable Thor Filter (with Envelope). You can apply this filter effect as an insert Combinator in any part of your audio chain in Reason or Record.

Selectable Thor Filter (with Envelope)
Selectable Thor Filter (with Envelope)

Download the Combinator patch here in zip file format: selectable-thor-filter.

Basically, it uses the Rotary 1 to switch between Thor’s 4 filters. If the rotary is set to the fully left position (at zero), then the filter is bypassed. Rotary 2 and 3 affect the Frequency and Resonance, respectively, and the Mod Wheel pushes the filter drive harder.

The interesting thing about this patch is the use of the Global Envelope to affect a few different parameters of Thor’s global section. First, I’ve programmed it so that button 4 is a toggle that turns the Envelope On/Off (incidentally, it also turns the step sequencer Gate on, which is needed to control the gating of the Global Envelope in Thor). Then Rotary 4 affects the Envelope amount.

What’s cooler in my opinion is the use of the first three buttons. Button 1 sends the Envelope to the Chorus Mod Amount. In order for this button to function, you must first turn the Chorus On (via the third button). Thinking about this now, you probably could asign both the Chorus On and Envelope > Chorus functionality to the same button. But anyway….

The second button sends the Envelope to the Resonance. In order for this to be effective, the Resonance must be set to a value other than zero (on Rotary 3).

If you would like to know more about how this patch was constructed, I’ve posted a two-part video series on youtube below:

Part 1: Creating a Selectable Thor Filter

Part 2: Creating a Selectable Thor Filter (creating the Envelope switcher buttons):

Hope you find it useful. Let me know what you think?

17 – Auto-Panning Methods

Learn a few different ways to automatically pan your audio back and forth from left to right or right to left in the stereo field using the LFOs of the Reason synth devices or a Matrix pattern device. As you’ll see, these methods are not that difficult to understand or implement.

Here I’m going to go over a few different ways you can automatically pan your audio back and forth in the Stereo field. As you’ll see, the methods are not that difficult to understand or implement. Once you have this process down, you can also go on to do more complicated panning techniques, such as combining waveforms for panning, panning filter frequencies, or panning your EQ to create left to right frequency sweeps. Of course, I’m not going to go into all of these advanced techniques. Rather, I’ll delve into the world of auto-panning slowly to get your mind wrapped around some of the different methods you can use in Reason and Record.

Download the project files here: auto-panning-methods. This is a single .rns file with 4 different Auto-Panning Combinators set up for you. Each one affects the same audio source and then gets sent to their own mixer channels in the 14:2 mixer. Mute/solo the channel you want to hear to listen to the examples. Note that each Combinator in this set uses a different way to pan the signal. Each has their strengths and weaknesses, as you’ll see in the tutorial below.

At it’s heart, panning simply moves your sound from Left to Right or Right to Left in the stereo field. In order for the software to pan your sound, you must set up something that signals the audio to move from one side to the other. Usually, this means assigning an LFO or Mod Envelope to control the pan position of your audio. Since Reason and Record have CV inputs assigned to every channel in their mixers, as well as directly on the Mix and Audio Devices themselves, panning any audio source can be achieved with one simple CV connection. Also note that you can pan a mono signal from one side to the other just as you can pan a stereo signal from one side to the other.

Setting up a simple Pan using the Subtractor LFO1

Here is one of the easiest ways to create your automatic panning using the LFO of a Subtractor device:

  1. Open up your audio source in Record or Reason. This can be any synth device, audio channel, mix channel, etc. The point is that you need an audio source to affect.
  2. Next, create a Combinator. Then inside the Combinator, hold your Shift key down and create a 6:2 line mixer and a Subtractor.
  3. Initialize the Subtractor. This means reducing all the values in the Subtractor to zero (range/polyphony/ADSR envelopes, etc.).
  4. Press the “Tab” key to flip the rack around to the back. Connect the Combinator’s Left and Right “To Devices” to the Mixer’s first channel’s Left and Right inputs. It’s not shown in the image below, but you’ll have to also route the audio source Left and Right output to the Left and Right Combinator input.
  5. Connect the LFO1 CV out from the Subtractor’s Modulation Output section into the Pan CV in on the mixer’s first channel. Then turn the trim knob all the way right. This means that the CV will fully control the panning of the audio source.
The back of the rack showing the Subtractor LFO1 modulating the Pan of the Sound Source.
The back of the rack showing the Subtractor LFO1 modulating the Pan of the Sound Source.

With this setup, the subtractor’s LFO1 is controlling the audio position in the stereo field. This is a great setup, however, there are two main problems: 1. You have access to a very limited set of LFO waveforms (6 to be exact), and none of those waveforms is a straightforward “sine” wave. And 2. Since the Subtractor is free-running, there’s no way for you to turn off the LFO. It will continually pan from side to side, with the Panning speed based on the Rate in the LFO1 section. I can live with #1, however, #2 is a huge hindrance and is enough for me to say no thanks! Let’s find a better way.

Panning with the Malstrom Curves (a step upward)

Now let’s up the game a little.

  1. Delete the Subtractor we just created, and instead hold the shift key and create a Malstrom device. Again, initialize the device by moving all the faders to zero and reducing the polyphony to 1 and the pitch range value to zero. Turn everything off except for the “Modulation A Curve” — leave that little light on.

    The fully initialized Malstrom
    The fully initialized Malstrom
  2. Flip to the back of the rack, and route a CV cable from the Mod A output to the Pan CV in on the line mixer.

    The back of the rack showing how Mod A is controlling the Pan CV in on Mixer Channel 1
    The back of the rack showing how Mod A is controlling the Pan CV in on Mixer Channel 1

Now the Curve from Mod A is controlling the Panning for the sound source. The nice thing about this setup is that you can turn Mod A on or off, which in turn turns the panning on or off (unlike previously in our Subtractor example). Furthermore, there’s another added benefit: you can select from the Malstrom’s 32 different waveforms. Now that’s some serious power.

Panning with Thor (an alternative)

The Malstrom is great if you want to play with a lot of curves to pan your sound source. However, there are a few advantages to using Thor’s LFO2 instead.

For a detailed run-through of how to setup Thor to auto-pan your sound source, have a look at the video below:

In this situation, you would delete the Malstrom, and initialize a Thor in its place. Send the CV1 Output to the Pan CV in on channel one of the line mixer. Then in Thor’s mod matrix, you use LFO2 as a source and CV1 Out as a destination. Finally, you could set up a button on the Combinator so that when the button was off, Thor’s “Mod Destination Amount” is set to zero (0), and when turned on, it is set to 100. This way, the button acts as a switch to turn the CV on/off. Just have a look in the project files to see how this is set up.

Thor CV1 out going to the Pan CV in on the first mixer channel.
Thor CV1 out going to the Pan CV in on the first mixer channel. Thor's LFO2 being sent to the CV Out1 (in turn routed to the Pan CV in on the mixer)

The benefit to using Thor is that you can assign the LFO2 delay and Key Sync parameters to the Combinator Rotaries/Buttons, which is something you can’t do with the other methods. So it all boils down to how you want to pan your sound. There’s no better or worse way to do it. If you know the panning won’t ever need to be turned off for the duration of your song, you can use the Subtractor. If you need control over the delay and Key Sync parameters of the LFO, then you know Thor is the only choice.

The Matrix (a wild card)

The last way I’m going to discuss is how you can use a Matrix to create your own waveform to affect the panning of a sound source. This is just like the previous methods, except you draw in a pattern inside the matrix, and on the back you connect the Curve CV to the Pan CV input on the first channel of the line mixer. Be sure to change the front panel of the matrix to “Curve” and on the back, select “Bipolar” as the curve selection. Panning is a bipolar process going from -64 to +63 with zero (0) being dead center. So the matrix needs to utilize this bipolar functionality to have the panning work correctly.

The Matrix Curve CV being sent to the Pan CV input on channel 1 of the mixer
The Matrix Curve CV being sent to the Pan CV input on channel 1 of the mixer The Matrix from the front with a Curve setup.

The drawback is that the curves are always in sync with the tempo (which may or may not be what you want), and your rate selection is limited to locked-in resolutions in the matrix. You can’t have any concept of a free-running rate system with this setup. On the plus side, you can draw in up to 32 unique patterns (on each of the matrix pattern banks), and then assign a rotary to the pattern selection to cycle through the different programmed curve patterns.

Now, I’ll show you how the Modulation Matrix is set up on each of the Combinators. Looking at these setups, you can see how each one has a different set of parameters that can be controlled. This is how you determine what the right “fit” is for your sound source. Get to know these inside out and it will become really easy to figure out which one works best for each of your audio scenarios:

From top to bottom: Sub, Mal, Thor, Matrix auto-panner Combinator setups.
From top to bottom: Sub, Mal, Thor, Matrix auto-panner Combinator setups.

So there you have it. A few different ways you can auto-pan your sound source. Things can get pretty interesting if you start crossing pans or inverting one sound source with another, so that when one sound is in the left channel, another sound is in the right channel (hint: use the spider’s “inverted” split to output one CV split to the second channel). You also don’t have to use an LFO to achieve your panning. You can easily draw in automation for the panning knob on the mixer channels and have full control over drawing in the panning curves yourself in the sequencer. Oh there’s lots of possibilities.

So do you have any suggestions or other interesting ways you’ve developed for panning your elements in Reason and Record. I’m always looking for innovative ways to use panning in my mixes. It’s a great way to add some movement and modulation to your pieces. Move up the rate fast enough and you almost have a vibrato or phased effect on your sound, which can add interest. So tell me what you’ve come up with and share it with all of us.

Here’s a bonus little rns file for Sterioevo (see his comment below). He was suggesting using an RPG-8 as a Panning device. Now the problem with this is that the Arp is not bipolar. The notes / gate CV output from the Arp is unipolar. So with a little tweaking, you can create something that comes close. A kind of pseudo-panner using the Arp. This was a pretty interesting technique so I thought I would provide the file here: arp-auto-panner-idea Enjoy!

Selig also had a comment on the Propellerhead forum that is important when talking about panning your audio. I thought I would quote him here, as it’s a very good point:

“The main problem I always had with using the CV Pan input is that the panning only goes half way to either side – I want a panner that goes ALL THE WAY!!! And the easy way to accomplish that is to route the LFO’s CV output (from any synth) to a combinator Rotary Knob’s rear input (cranking the little knob up all the way) and assign it to the mixer’s Panner with the combi’s Programmer. Check it out – NOW you have some serious P – A – N – N – I – N – G ! And all your cool tips will still apply. :-)”